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Statistical Modeling and Analysis for Robust
Synthesis of Nanostructures

Tirthankar DASGUPTA, Christopher MA, V. Roshan JOSEPH, Z. L. WANG, and C. F. Jeff WU

We systematically investigate the best process conditions that ensure synthesis of different types of one-dimensional cadmium selenide
nanostructures with high yield and reproducibility. Through a designed experiment and rigorous statistical analysis of experimental data,
models linking the probabilities of obtaining specific morphologies to the process variables are developed. A new iterative algorithm for
fitting a multinomial generalized linear model is proposed and used. The optimum process conditions, which maximize the preceding
probabilities and make the synthesis process robust (i.e., less sensitive) to variations in process variables around set values, are derived from
the fitted models using Monte Carlo simulations.

Cadmium selenide has been found to exhibit one-dimensional morphologies of nanowires, nanobelts, and nanosaws, often with the three
morphologies being intimately intermingled within the as-deposited material. A slight change in growth condition can result in a totally
different morphology. To identify the optimal process conditions that maximize the yield of each type of nanostructure and, at the same
time, make the synthesis process robust (i.e., less sensitive) to variations of process variables around set values, a large number of trials
were conducted with varying process conditions. Here, the response is a vector whose elements correspond to the number of appearances
of different types of nanostructures. The fitted statistical models would enable nanomanufacturers to identify the probability of transition
from one nanostructure to another when changes, even tiny ones, are made in one or more process variables. Inferential methods associated
with the modeling procedure help in judging the relative impact of the process variables and their interactions on the growth of different
nanostructures. Owing to the presence of internal noise, that is, variation around the set value, each predictor variable is a random variable.
Using Monte Carlo simulations, the mean and variance of transformed probabilities are expressed as functions of the set points of the
predictor variables. The mean is then maximized to find the optimum nominal values of the process variables, with the constraint that the
variance is under control.

KEY WORDS: Cadmium selenide nanostructures; Generalized linear model; Multinomial; Nanotechnology; Robust design; Statistical
modeling.

1. INTRODUCTION

Nanotechnology is the construction and use of functional
structures designed at the atomic or molecular scale with at least
one characteristic dimension measured in nanometers (1 nm =
10−9 m, which is about 1/50,000 of the width of human hair).
The size of these nanostructures allows them to exhibit novel
and significantly improved physical, chemical, and biologi-
cal properties, phenomena, and processes. Nanotechnology can
provide unprecedented understanding of materials and devices
and is likely to impact many fields. By using a nanoscale struc-
ture as a tunable physical variable, scientists can greatly ex-
pand the range of performance of existing chemicals and ma-
terials. Alignment of linear molecules in an ordered array on a
substrate surface (self-assembled monolayers) can function as
a new generation of chemical and biological sensors. Switching
devices and functional units at the nanoscale can improve com-
puter storage and operation capacity by a factor of a million.
Entirely new biological sensors can facilitate early diagnostics
and disease prevention of cancers. Nanostructured ceramics and
metals have greatly improved mechanical properties, both in
ductility and in strength.

Current research by nanoscientists typically focuses on nov-
elty, discovering new growth phenomena and new morpholo-
gies. However, within the next 5 years there will likely be a
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shift in the nanotechnology community toward controlled and
large-scale synthesis with high yield and reproducibility. This
transition from laboratory-level synthesis to large-scale, con-
trolled, and designed synthesis of nanostructures necessarily
demands systematic investigation of the manufacturing condi-
tions under which the desired nanostructures are synthesized
reproducibly, in large quantity, and with controlled or isolated
morphology. Application of statistical techniques can play a key
role in achieving these objectives. This article reports on a sys-
tematic study on the growth of one-dimensional cadmium se-
lenide (CdSe) nanostructures through statistical modeling and
optimization of the experimental parameters required for syn-
thesizing desired nanostructures. This work is based on the ex-
perimental data presented in this article and research published
in Ma and Wang (2005). Some general statistical issues and re-
search opportunities related to the synthesis of nanostructures
are discussed in the concluding section.

Cadmium selenide has been investigated over the past
decade for applications in optoelectronics (Hodes, Albu-Yaron,
Decker, and Motisuke 1987), luminescent materials (Bawendi,
Kortan, Steigerwald, and Brus 1989), lasing materials (Ma,
Ding, Moore, Wang, and Wang 2004), and biomedical imaging.
It is the most extensively studied quantum-dot material and is,
therefore, regarded as the model system for investigating a wide
range of nanoscale processes. CdSe is found to exhibit the one-
dimensional morphologies of nanowires, nanobelts, and nano-
saws (Ma and Wang 2005), often with the three morphologies
being intimately intermingled within the as-deposited material.
Images of these three nanostructures obtained using a scanning
electron microscope are shown in Figure 1.

In this experiment, the response is a vector whose elements
correspond to the number of appearances of different types of
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Figure 1. SEM images of nanostructures (from left to right: nanosaws, nanowires, nanobelts).

nanostructures and, hence, is a multinomial random variable.
Thus, a multinomial generalized linear model (GLM) is the ap-
propriate tool for analyzing the experimental data and express-
ing the multinomial logits as functions of the predictor variables
(McCullagh and Nelder 1989; Faraway 2006). A new iterative
algorithm for fitting a multinomial GLM that has certain advan-
tages over the existing methods is proposed and implemented.
The probability of obtaining each nanostructure is expressed as
a function of the predictor variables. Owing to the presence of
inner noise, that is, variation around the set value, each predic-
tor variable is a random variable. Using Monte Carlo simula-
tions, the expectation and variance of transformed probabilities
are expressed as functions of the set points of the predictor vari-
ables. The expectation is then maximized to find the optimum
set values of the process variables, ensuring at the same time
that the variance is under control. The idea is, thus, similar to
the two-step robust parameter design for larger-the-better re-
sponses (Wu and Hamada 2000, chap. 10).

This article is organized as follows. In Section 2 we give a
brief account of the synthesis process, the experimental design,
and the collection of data. Section 3 is devoted to fitting appro-
priate statistical models to the experimental data. This section
consists of two subsections. In Section 3.1 a preliminary analy-
sis using a binomial GLM is shown. Estimates of the parame-
ters obtained here are used as initial estimates in the iterative
algorithm for the multinomial GLM, which is developed and
described in Section 3.2. In Section 4 we study the optimiza-
tion of the process variables to maximize the expected yield
of each nanostructure. Some general statistical issues and chal-
lenges in nanostructure synthesis and opportunities for future
research are discussed in Section 5.

2. THE SYNTHESIS PROCESS, DESIGN OF
EXPERIMENT, AND DATA COLLECTION

The CdSe nanostructures were synthesized (see Fig. 2)
through a thermal evaporation process in a single-zone horizon-
tal tube furnace (Thermolyne 79300). A 30-inch polycrystalline
Al2O3 tube (99.9% purity) with an inner diameter of 1.5 inches
was placed inside the furnace. Commercial-grade CdSe (Alfa
Aesar, 99.995% purity, metal basis) was placed at the center of
the tube as use as a source material. Single-crystal silicon sub-
strates with a 2-nm thermally evaporated noncontinuous layer

of gold were placed downstream of the source in order to col-
lect the deposition of the CdSe nanostructures. The system was
held at the set temperature and pressure for a period of 60 min
and cooled to room temperature afterwards. The as-deposited
products were characterized and analyzed by scanning electron
microscopy (SEM; LEO 1530 FEG) or transmission electron
microscopy (TEM; Hitachi HF-2000 FEG at 200 kV). As many
as 180 individual nanostructures were counted from the depo-
sition on each substrate.

The two key process variables affecting the morphology of
CdSe nanostructures are temperature and pressure. A 5 × 9 full
factorial experiment was conducted with five levels of source
temperature (630, 700, 750, 800, 850◦C) and nine levels of
pressure (4, 100, 200, 300, 400, 500, 600, 700, 800 mbar). For
a specific combination of source temperature and pressure, four
to six substrates were placed downstream of the source to col-
lect the deposition of nanostructures. The distance of the mid-
point of the substrate from the source was measured and treated
as a covariate.

Three experimental runs were conducted with each of the
45 combinations of temperature and pressure. However, these
three runs cannot be considered to be replicates, because the
number and location of substrates were not the same in the
three runs. Consider, for example, the three runs performed
with a temperature of 630◦C and a pressure of 4 mbar. In the
first run, six substrates were placed at distances of 1.9, 4.2, 4.9,
6.4, 8.1, and 10.2 cm from the source. In the second run, four
substrates were placed at distances of 1.7, 4.6, 7.1, and 8.9 cm
from the source. Seven substrates were placed at distances of
2.0, 4.3, 4.9, 6.4, 8.5, 10.6, and 13.0 cm from the source in

Figure 2. Synthesis process.
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Table 1. Partial data (first 17 rows out of 415) obtained from the nanoexperiment

Temperature Pressure Distance
(◦C) (mbar) (cm) Nanosaws Nanowires Nanobelts No growth

630 4 12.4 0 0 0 180
630 4 14.7 74 106 0 0
630 4 15.4 59 121 0 0
630 4 16.9 92 38 50 0
630 4 18.6 0 99 81 0
630 4 20.7 0 180 0 0
630 4 12.2 50 94 36 0
630 4 15.1 90 90 0 0
630 4 17.6 41 81 58 0
630 4 19.4 0 121 59 0
630 4 12.5 49 86 45 0
630 4 14.8 108 72 0 0
630 4 15.4 180 0 0 0
630 4 16.9 140 40 0 0
630 4 19.0 77 47 56 0
630 4 21.1 0 88 92 0
630 4 23.5 0 0 0 180

the third run. Therefore, 17 (= 6 + 4 + 7) individual substrates
were obtained with the temperature and pressure combination
of (630◦C, 4 mbar). Each of these 17 substrates constitutes a
row in Table 1. The total number of substrates obtained from
the 135 (=45×3) runs was 415. Note that this is not a multiple
of 45 owing to an unequal number of substrates corresponding
to each run.

By considering each of the 415 substrates as an experimental
unit, the design matrix can, thus, be considered to be a 415 × 3
matrix, where the three columns correspond to source temper-
ature (TEMP), pressure (PRES), and distance from the source
(DIST). Each row corresponds to a substrate, on which a depo-
sition is formed with a specific combination of TEMP, PRES,
and DIST (see Table 1).

Recall that from the deposition on each substrate, 180
individual nanostructures were counted using SEM images.
The response was, thus, a vector Y = (Y1, Y2, Y3, Y4), where
Y1, Y2, Y3, and Y4 denote, respectively, the number of nano-
saws, nanowires, nanobelts, and no morphology, with∑4

j=1 Yj = 180. For demonstration purposes, the first 17 rows
of the complete dataset are shown in Table 1. These rows
correspond to the temperature–pressure combination (630,4).
The complete data can be downloaded from www.isye.gatech.
edu/~roshan.

Almost no morphology was observed at a source temperature
of 850◦C. Therefore, results obtained from the 67 experimental
units involving this level of temperature were excluded, and the
data for the remaining 348 units were considered for analysis.

Henceforth, we shall use the suffixes 1, 2, 3, and 4 to repre-
sent quantities associated with nanosaws, nanowires, nanobelts,
and no growth, respectively.

3. MODEL FITTING

3.1 Individual Modeling of the Probability of Obtaining
Each Nanostructure Using Binomial GLM

Here, the response is considered binary, depending on
whether we get a specific nanostructure or not. Let p1, p2,

and p3 denote, respectively, the probabilities of getting a nano-
saw/nanocomb, nanowire, and nanobelt. Then, for j = 1,2,3,
the marginal distribution of Yj is binomial with n = 180 and
probability of success pj . The log-odds ratio of obtaining the
j th type of morphology is given by

ζj = log
pj

1 − pj

.

Our objective is to fit a model that expresses the above log-odds
ratios in terms of TEMP, PRES, and DIST .

From the main effects plot of TEMP, PRES, and DIST
against observed proportions of nanosaws, nanowires, and
nanobelts (Fig. 3), we observe that a quadratic model should
be able to express the effect of each variable on pj adequately.
The interaction plots (not shown here) give a preliminary im-
pression that all the three two-factor interactions are likely to
be important. We, therefore, decide to fit a quadratic response
model to the data.

Each of three process variables is scaled to [−1,1] by ap-
propriate transformations. Let T ,P , and D denote the scaled
variables obtained by transforming TEMP, PRES, and DIST ,
respectively.

Using a binomial GLM with a logit link (McCullagh and
Nelder 1989), we obtain the following models that express the
log-odds ratios of getting a nanosaw/nanocomb, nanowire, and
nanobelt as functions of T ,P , and D:

ζ̂1 = −.99 − .29T − 1.52P − 2.11D − .95T 2 − 1.30P 2

− 5.64D2 − .18T P − 1.03PD + 4.29T D, (1)

ζ̂2 = −.56 + .82T − 2.53P − 1.59D − .58T 2 − 2.04P 2

− 2.62D2 + 1.17T P − 1.44PD + .87DT, (2)

ζ̂3 = −1.68 + .19T − 1.88P − .58D − 1.69T 2 − .34P 2

− 3.20D2 + .87T P − .94PD − 2.58T D. (3)

All the terms are highly significant. The residual plots for all
three models do not exhibit any unusual pattern.
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Figure 3. From left to right: growth versus temperature, growth versus pressure, growth versus distance.

3.2 Simultaneous Modeling of the Probability Vector
Using Multinomial GLM

Denoting the probability of not obtaining any nanostructure
by p4, we must have

∑4
j=1 pj = 1. Although the results ob-

tained using the binomial GLM are easily interpretable and use-
ful, the method suffers from the inherent drawback that, for
specific values of T ,P , and D, the fitted values of the prob-
abilities may be such that

∑3
j=1 pj > 1. This is due to the fact

that the correlation structure of Y is completely ignored in this
approach.

A more appropriate modeling strategy is to utilize the fact
that the response vector Y follows a multinomial distribution
with n = 180 and probability vector p = (p1,p2,p3,p4). In
this case, one can express the multinomial logits ηj = log(

pj

p4
),

j = 1,2,3, as functions of T ,P , and D. Note that ηj can be
easily interpreted as the log-odds ratio of obtaining the j th mor-
phology as compared to no nanostructure, with η4 = 0.

Methods for fitting multinomial logistic models by maxi-
mizing the multinomial likelihood have been discussed by sev-
eral authors (Aitkin, Anderson, Francis, and Hinde 1989; Mc-
Cullagh and Nelder 1989; Agresti 2002; Faraway 2006; Long
and Freese 2006). These methods have been implemented in
several software packages such as R/S-plus (multinom func-
tion), STATA (.mlogit function), LIMDEP (Mlogit$ function),
SAS (CATMOD function), and SPSS (Nomreg function). All
of these functions use some algorithm for maximization of the
multinomial likelihood (e.g., the multinom function in R/S-plus
uses the neural network–based optimizer provided by Venables
and Ripley 2002). They produce more or less similar outputs,
the default output generally consisting of the model coeffi-
cients, their standard errors and z values, and model deviance.

Another popular algorithm to indirectly maximize the multi-
nomial likelihood is to create a pseudo factor with a level for
each data point and use a Poisson GLM with log link. This
method, although appropriate for small datasets, becomes cum-
bersome when the number of data points is large. In the pres-
ence of a large number of levels of the pseudo factor, a large part
of the output generated by standard statistical software such as
R becomes redundant, because only the terms involving inter-
action between the categories and the predictor variables are
of interest. Faraway (2006) pointed out some practical incon-
veniences of using this method. Its application to the current

problem clearly becomes very cumbersome owing to the large
number (348) of data points.

We propose a new iterative method of fitting multinomial
logit models. The method is based on an iterative application
of binomial GLMs. Besides the intuitive extension of binomial
GLMs to a multinomial GLM, the method has certain advan-
tages over the existing methods, which are described toward
the end of this section.

Let Yi = (Yi1, . . . , Yi4) denote the response vector corre-
sponding to the ith data point, i = 1–N . Let ni = ∑4

j=1 Yij .
Here, N = 348 and ni = n = 180 for all i. We have

P(Yi1 = yi1, . . . , Yi4 = yi4) = ni !
yi1! · · ·yi4!p

yi1
i1 · · ·pyi4

i4 .

Thus, the likelihood function is given by

L(Y1, . . . ,YN) =
N∏

i=1

ni !
yi1! · · ·yi4!p

yi1
i1 · · ·pyi4

i4

=
N∏

i=1

ni !
yi1! · · ·yi4!

3∏

j=1

(
pij

pi4

)yij

p

∑4
j=1 yij

i4 .

Defining ηij = log
pij

pi4
, we have

pij = ηij

1 + ∑3
j=1 exp (ηij )

, j = 1,2,3, (4)

and

pi4 = 1

1 + ∑3
j=1 exp (ηij )

. (5)

Therefore, the log likelihood can be written as

log(L)

=
N∑

i=1

(

logni ! −
4∑

j=1

logyij ! +
3∑

j=1

yij log
pij

pi4
+ ni logpi4

)

=
N∑

i=1

(

logni ! −
4∑

j=1

logyij ! +
3∑

j=1

yij ηij

− ni log

(

1 +
3∑

j=1

exp (ηij )

))

. (6)
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Let xi = (1, Ti,Pi,Di, T
2
i , P 2

i ,D2
i , TiPi,PiDi, TiDi)

′, i =
1, . . . ,N . The objective is to express the η’s as functions of x.
Substituting ηij = x′

iβj in (6) and successively differentiating
with respect to each βj , we get the maximum likelihood (ML)
equations as

N∑

i=1

xi

(

yij − ni

exp(ηij )

1 + ∑3
j=1 exp (ηij )

)

= 0, j = 1,2,3,

(7)

N∑

i=1

xi

(

y14 − ni

1

1 + ∑3
j=1 exp (ηij )

)

= 0, (8)

where 0 denotes a vector of 0’s having length 10. Writing
exp(γil) = (1 + ∑

l �=j exp(ηij ))
−1, we obtain from (7)

N∑

i=1

xi

(

yij − ni

exp(ηij + γij )

1 + exp(ηij + γij )

)

= 0, j = 1,2,3. (9)

Note that each equation in (9) is the ML equation of a bi-
nomial GLM with logit link. Thus, if some initial estimates of
β2,β3 are available and, consequently, γi1 can be computed,
then β1 can be estimated by fitting a binomial GLM of Y1 on x.
Similarly, β2 and β3 can be estimated. The following algorithm
is, thus, proposed.

Binomial GLM-Based Iterative Algorithm for Fitting a
Multinomial GLM. Let β

(k)
j be the estimate of βj , j = 1,2,3,

at the end of the kth iteration.

Step 1. Using β
(k)
2 and β

(k)
3 , compute η

(k)
i2 = x′

iβ
(k)
2 and

η
(k)
i3 = x′

iβ
(k)
3 for i = 1, . . . , n.

Step 2. Compute γ
(k)
i1 = log 1

1+exp(η
(k)
i2 )+exp(η

(k)
i3 )

, i = 1,

. . . , n.
Step 3. Treating Y1 as the response and using the same de-

sign matrix, fit a binomial GLM with logit link. The
vector of coefficients thus obtained is β

(k+1)
1 .

Step 4. Repeat Steps 1–3 by successively updating γi2 and
γi3 and estimating β

(k+1)
2 and β

(k+1)
3 .

Repeat Steps 1–4 until convergence. A proof of convergence is
given in Appendix A. Note that we use the “offset” command in
the statistical software R to separate the coefficients associated
with η1 from those with γ1.

To obtain the initial estimates η̂
(0)
i2 and η̂

(0)
i3 , we use the results

obtained from the binomial GLM as described in Section 4.1.
Let

log
p̂ij

1 − p̂ij

= x′
i δ̂j , (10)

where δ̂j is obtained using binomial GLM. Recalling the defin-
ition of ηij , we get the initial estimates

η̂
(0)
ij = log

p̂ij

1 − ∑3
l=1 p̂il

, j = 2,3, (11)

where p̂il , l = 1,2,3, are estimated from (10). It is possible,
however, that, for some i,

∑3
l=1 p̂il = πi ≥ 1. For those data

points, we provide a small correction as follows:

p̂c
il =

⎧
⎪⎪⎨

⎪⎪⎩

p̂il

πi

(

1 − 1

2ni

)

, l = 1,2,3

1

2ni

, l = 4,

where p̂c
il denotes the corrected estimated probability. To jus-

tify the correction, we note that it is a common practice to give a
correction of 1

2ni
(Cox 1970, chap. 3) in the estimation of prob-

abilities from binary data. The correction given to category 4 is
adjusted among the other three categories in the same propor-
tion as the estimated probabilities. This ensures that p̂il > 0 for
all i and

∑4
l=1 p̂il = 1.

In this example, there were 18 data points (out of 348) cor-
responding to which we had

∑3
l=1 p̂il ≥ 1. Following the pro-

cedure described previously to obtain the initial estimates, the
following models were obtained after convergence:

η̂1 = .42 − .12T − 3.08P − 3.68D − 1.84T 2 − 1.52P 2

− 9.09D2 + .60T P − 2.31PD + 5.75T D, (12)

η̂2 = .54 + .88T − 3.85P − 3.13D − 1.21T 2 − 2.28P 2

− 5.26D2 + 1.83T P − 2.62PD + 2.07T D, (13)

η̂3 = −.10 + .39T − 3.67P − 2.51D − 2.51T 2 − 1.12P 2

− 7.07D2 + 1.72T P − 2.38PD + 4.47T D. (14)

Inference for the Proposed Method. To test the significance
of the terms in the model, one can use the asymptotic nor-
mality of the maximum likelihood estimates. Let Hβ denote
the 30 × 30 matrix consisting of the negative expectations of
second-order partial derivatives of the log-likelihood function
in (6), the derivatives being taken with respect to the compo-
nents of β1,β2, and β3. By denoting the final estimator of β

as β∗, the estimated asymptotic variance–covariance matrix of
the estimated model coefficients is given by �β∗ = H−1

β∗ . For
a specific coefficient βl , the null hypothesis H0 :βl = 0 can be
tested using the test statistic z = β̂l/s(β̂l), where s2(β̂l) is the
lth diagonal element of �β∗ .

Let β
(k)
l denote the estimate of βl obtained after the kth

iteration of the proposed algorithm. Let s2(β
(k)
l ) denote the

estimated asymptotic variance of β
(k)
l . It can easily be seen

(App. B) that s2(β
(k)
l ) converges to s2(β∗

l ). Thus, as the para-
meter estimates converge to the maximum likelihood estimates,
their standard errors also converge to the standard error of the
MLE. More generally, if �β(k) denotes the asymptotic covari-
ance matrix of the parameter estimates at the end of the kth
iteration, then �β(k) → �β∗ .

The preceding property of the proposed algorithm ensures
that one does not have to spend any extra computational effort
in judging the significance of the model terms. The binomial
GLM function in R used in every iteration automatically tests
the significance of the model terms, and the p values associated
with the estimated coefficients after convergence can be used
for inference. Thus, the inferential procedures and diagnostic
tools of the binomial GLM can easily be used in the multino-
mial GLM model. This is clearly an advantage of the proposed
algorithm over existing methods. Further, the three models for
nanosaws, nanobelts, and nanowires can be compared using
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Table 2. Computed values of the test statistic for each estimated coefficient

Nanosaws (η̂1) Nanowires (η̂2) Nanobelts (η̂3)

Term β̂ S.E. p value β̂ S.E. p value β̂ S.E. p value

Intercept .42 .24 .0807 .54 .25 .0343 −.10 .24 .6763
T −.12 .30 .6855 .88 .28 .0020 .39 .38 .3125
P −3.08 .41 .0000 −3.85 .50 .0000 −3.67 .51 .0000
D −3.69 .67 .0000 −3.13 .57 .0000 −2.51 .66 .0001
T 2 −1.84 .34 .0000 −1.21 .27 .0000 −2.51 .34 .0000
P 2 −1.52 .44 .0006 −2.28 .52 .0000 −1.12 .54 .0381
D2 −9.09 .99 .0000 −5.26 .66 .0000 −7.08 .77 .0000
T P .60 .42 .1515 1.83 .41 .0000 1.72 .53 .0011
PD −2.31 .83 .0053 −2.62 .70 .0000 −2.38 .84 .0043
T D 5.75 .80 .0000 2.07 .45 .0000 4.47 .69 .0000

these diagnostic tools. Such facilities are not available in the
current implementation of other software packages.

In the fitted models given by (12)–(14), all 30 coefficients
are seen to be highly significant with p values on the order of
10−6 or less. To check the model adequacy, we use the gen-
eralized R2 statistic derived by Naglekerke (1991) defined as
R2 = (1 − exp ((D − Dnull)/n))/(1 − exp (−Dnull/n)), where
D and Dnull denote the residual deviance and the null deviance,
respectively. The R2 associated with the models for nanosaws,
nanowires, and nanobelts are obtained as 61%, 50%, and 76%,
respectively. This shows that the prediction error associated
with the model for nanowires is the largest. This finding is con-
sistent with the observation made by Ma and Wang (2005) that
growth of nanowires is less restrictive compared to that of nano-
saws and nanowires and can be carried out over wide ranges of
temperature and pressure.

However, the small p values may also arise from the fact
that some improper variance is used in testing. This overdis-
persion may be attributed to either some correlation among the
outcomes from a given run in the experiment or some unex-
plained heterogeneity within a group owing to the effect of
some unobserved variable. A multitude of external noise fac-
tors in the system make the second reason a more plausible
one. We re-perform the testing by introducing three dispersion
parameters σ 2

1 , σ 2
2 , and σ 2

3 , which are estimated from the ini-
tial binomial fits using σ̂ 2

j = χ2
j /(N − 10), where χ2

j denotes
Pearson’s χ2 statistic for the j th nanostructure, j = 1,2,3, and
N −10 = 338 is the residual degrees of freedom. The estimated
standard errors of the coefficients and the corresponding p val-
ues are shown in Table 2.

From Table 2, we find that the linear effect of temperature is
not significant for nanosaws and nanobelts. However, because
the quadratic term T 2 and the interactions involving T are sig-
nificant, we prefer to retain T in the models.

Note that although techniques for analyzing overdispersed
binomial data are well known (e.g., Faraway 2006, chap. 2),
methods for handling overdispersion in multinomial logit mod-
els are not readily available. The proposed algorithm provides
us with a very simple heuristic way to do this and, thereby, has
an additional advantage over the existing methods.

4. OPTIMIZATION OF THE SYNTHESIS PROCESS

In the previous sections, the three process variables have
been treated as nonstochastic. However, in reality, none of these

variables can be controlled precisely, and each of them exhibits
certain fluctuations around the set (nominal) value. Such fluctu-
ation is a form of noise, called internal noise (Wu and Hamada
2000, chap. 10), associated with the synthesis process and needs
to be considered in performing optimization.

It is, therefore, reasonable to consider TEMP, PRES, and
DIST as random variables. Let μTEMP,μPRES, and μDIST de-
note the set values of TEMP, PRES, and DIST , respectively.
Then we assume

TEMP ∼ N(μTEMP, σ 2
TEMP),

PRES ∼ N(μPRES, σ
2
PRES),

DIST ∼ N(μDIST , σ 2
DIST),

where σ 2
TEMP, σ 2

PRES, and σ 2
DIST are the respective variances of

TEMP, PRES, and DIST around their set values and are esti-
mated from process data (Sect. 5.1). The task now is to deter-
mine the optimal nominal values of μTEMP, μPRES, and μDIST

so that the expected yield of each nanostructure is maximized
subject to the condition that the variance in yield is acceptable.

4.1 Measurement of Internal Noise in the
Synthesis Process

Some surrogate process data collected from the furnace were
used for estimation of the preceding variance components.
Temperature and pressure were set at specific levels (those used
in the experiment), and their actual values were measured re-
peatedly over a certain period of time. The range of tempera-
ture and pressure corresponding to each set value was noted.
The variation in distance, which is due to repeatability and re-
producibility errors associated with the measurement system,
was assessed separately. The summarized data in Table 3 show
the observed ranges of TEMP, PRES, and DIST against dif-
ferent nominal values. Under the assumption of normality, the
range can be assumed to be approximately equal to six times
the standard deviation.

We observe from Table 3 that, for the process variable DIST ,
the range of values around the nominal μDIST is constant (2 ×
.02 = .04 mm) and independent of μDIST . Equating this range
to 6σDIST , we obtain an estimate of σDIST as .04/6 = .067 mm.

Similarly, for TEMP, the range can be taken to be almost
a constant. Equating the mean range of 12.8 (=2 × (2 × 7 +
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Table 3. Fluctuation of process parameters around set values

Temperature (◦C) Pressure (mbar) Distance (mm)

Nominal value Observed range Nominal value Observed range Nominal value Observed range
(μT ) (≈ ±3σT ) (μP ) (≈ ±3σP ) (μD) (≈ ±3σD)

630 ±7 4 ±10 11 ±.02
700 ±7 100 ±10 13 ±.02
750 ±6 200 ±20 15 ±.02
800 ±6 300 ±20 17 ±.02
850 ±6 400 ±20 19 ±.02

500 ±40 21 ±.02
600 ±40

3 × 6)/5)◦C to 6σTEMP, an estimate of σTEMP is obtained as
12.8/6 = 2.13◦C.

The case of PRES is, however, different. The range, and
hence σPRES, is an increasing function of μPRES. Correspond-
ing to each value of μPRES, an estimate of σPRES is obtained by
dividing the range by 6. Using these values of σPRES, the fol-
lowing regression line is fitted through the origin to express the
relationship between σPRES and μPRES:

σPRES = .025μPRES. (15)

Recall that all the models are fitted with the transformed vari-
ables T ,P , and D. The means μT ,μP , and μD and the vari-
ances σ 2

T , σ 2
p , and σ 2

D can easily be expressed in terms of the
respective means and variances of the original variables.

4.2 Obtaining the Mean and Variance Functions
of p1, p2, and p3

From (4), we can write the estimated probability functions
as p̂j = exp(η̂j )/(1 + ∑3

j=1 exp(η̂j )), where η̂j are given by
(12)–(14).

Expressing E(pj ) and Var(pj ) in terms of μT ,μP , and
μD is not a straightforward task. To do this, we use Monte
Carlo simulations. For each of the 180 combinations of μTEMP,
μPRES, and μDIST (μTEMP = 630, 700, 750, and 800◦C;
μPRES = 4,100,200, . . . ,800 mbar; μDIST = 12, 14, 16, 18,
and 20 cm), the following are done:

1. μT , μP , and μD are obtained by appropriate transforma-
tion.

2. Five thousand observations on T ,P , and D are gener-
ated from the respective normal distributions and ηj is
obtained using (12), (13), or (14).

3. From the ηj values thus obtained, pj ’s are computed us-
ing (4) and transformed to ζj = log(pj /(1 − pj )).

4. The mean and variance of those 5,000 ζj values [denoted
by ζj and s2(ζj ), respectively] are computed.

5. Using linear regression, ζ̄j and log s2(ζj ) are expressed in
terms of μT , μP , and μD .

4.3 Maximizing the Average Yield

Because the response here is of larger-the-better type, max-
imizing the mean is more important than minimizing the vari-
ance in the two-step optimization procedure (Wu and Hamada
2000, chap. 10) associated with robust parameter design.

The problem can thus be formulated as

Maximize ζj subject to −1 ≤ μT ≤ 1, −1 ≤ μP ≤ 1,
−1 ≤ μD ≤ 1 for j = 1,2,3.

Physically, this would mean maximizing the average log-odds
ratio of getting a specific morphology.

The following models are obtained from the simulated data:

ζ1 = −.75 + .20μT − 1.02μP − 1.39μD − 1.50μ2
T

− 3.54μ2
P − 11.02μ2

D + 1.58μT μP

− 2.22μP μD + 8.41μT μD, (16)

ζ2 = −.40 + .80μT − 2.96μP − 1.43μD − .98μ2
T

− 2.45μ2
P − 6.05μ2

D + 1.87μT μP

− 3.41μP μD + 2.13μT μD, (17)

ζ3 = −1.25 + .26μT − 2.6μP − .42μD − 2.36μ2
T

− 1.24μ2
P − 8.03μ2

D + 1.74μT μP

− 3.32μP μD + 4.57μT μD. (18)

Maximizing these three functions using the optim command
in R, we get the optimal conditions for maximizing the expected
yield of nanosaws, nanowires, and nanobelts in terms of μT ,
μP , and μD . These optimal values are transformed to the orig-
inal units (i.e., in terms of μTEMP, μPRES, and μDIST ) and are
summarized in Table 4.

Contour plots of the average and variance of the yield proba-
bilities of nanosaws, nanowires, and nanobelts against temper-
ature and pressure (at optimal distances) are shown in Figure 4.
The white regions on the top (average) panels and the black re-
gions on the bottom (variance) panels are robust regions that
promote high yield with minimal variation.

On the basis of these contour plots and the optimization out-
put summarized in Table 4, the following conclusions can be
drawn:

Table 4. Optimal process conditions for maximizing the expected
yield of nanostructures

Nanostructure Temperature (◦C) Pressure (mbar) Distance (cm)

Nanosaws 630 307 15.1
Nanowires 695 113 19.0
Nanobelts 683 4 17.0
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Figure 4. Contour plots.

1. For nanosaws, the process is fairly robust at a pressure
below 400 mbar, irrespective of the source temperature.

2. For nanobelts, temperature affects robustness strongly,
and for a pressure less than 400 mbar, the process is very
robust only when the temperature is close to 700◦C.

3. A temperature of around 630◦C and a pressure of
310 mbar simultaneously maximize the average and min-
imize the variance of the probability of obtaining nano-
saws.

4. A temperature of around 700◦C and a pressure of around
120 mbar result in the highest average nanowire yield.
Low variance is also observed in this region.

5. The highest nanobelt yield is achieved at a temperature
of 680◦C and a pressure of 4 mbar. This is also a low-
variance region.

6. There is a large temperature–pressure region (white re-
gion in the top middle panel of Fig. 4) that promotes high
and consistent nanowire yield.

7. The highest yields of nanobelts and nanowires are
achieved at a higher distance (i.e., lower local tempera-
ture) as compared to nanosaws.

Except for the robustness-related conclusions, most of the
preceding findings are summarized and discussed by Ma and
Wang (2005). They also provide plausible and in-depth physi-
cal interpretations of some of these phenomena.

5. SOME GENERAL STATISTICAL ISSUES IN
NANOMATERIAL SYNTHESIS AND SCOPE FOR

FUTURE RESEARCH

In this article we report on an early application of statistical
techniques in nanomaterial research. In terms of reporting re-
sults of experiments to synthesize nanostructures, this method-
ology can be considered a significant advancement over the
rudimentary data analysis methods using simple graphs, charts,
and summary statistics (e.g., Ma and Wang 2005; Song, Wang,
Riedo, and Wang 2005) that have been reported in the nano-
material literature so far. Here we discuss features of the data
arising from a specific experiment and use a multinomial model
to express the probabilities of three different morphologies as
functions of the process variables. A new iterative algorithm,
which is more appropriate than conventional methods for the
present problem, is proposed for fitting the multinomial model.
Inner noise is incorporated into the fitted models, and robust
settings of process variables that maximize the expected yield
of each type of nanostructure are determined.

Apart from the advantages discussed earlier in this article
and mentioned by Ma and Wang (2005), this study demon-
strates how statistical techniques can help in identifying im-
portant higher order effects (e.g., quadratic effects or complex
interactions among the process variables) and how such knowl-
edge can be used in fine-tuning the optimal synthesis condi-
tions. This work is also an important step toward large-scale
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controlled synthesis of CdSe nanostructures, because in addi-
tion to determining conditions for high yield, it also identifies
robust settings of the process variables that are likely to guar-
antee consistent output.

Although statistical design of experiments (planning, analy-
sis, and optimization) has been applied very successfully to var-
ious other branches of scientific and engineering research to
determine high-yield and reproducible process conditions, its
application in nanotechnology has been limited to date. Some
unique aspects associated with the synthesis of nanostructures
that make the application of the preceding techniques in this
area challenging are (i) complete disappearance of nanostruc-
ture morphology with slight changes in process conditions;
(ii) complex response surface with multiple optima, making
exploration of optimal experimental settings very difficult (al-
though in the current case study, a quadratic response surface
was found more or less adequate, such is not the case in gen-
eral); (iii) different types of nanostructures (saws, wires, belts)
intermingled; (iv) categorical response variables in most cases;
(v) functional inputs (control factors that are functions of time);
(vi) a multitude of internal and external noise factors heavily
affecting reproducibility of experimental results; and (vii) ex-
pensive and time-consuming experimentation. In view of these
phenomena, the following are likely to be some of the ma-
jor statistical challenges in the area of nanostructure synthe-
sis:

1. Developing a sequential space-filling design for maxi-
mization of yield. Fractional factorial designs and orthog-
onal arrays are the most commonly used (Wu and Hamada
2000) designs, but are not suitable for nanomaterial syn-
thesis, because the number of runs becomes prohibitively
large as the number of levels increases. Moreover, they do
not facilitate sequential experimentation, which is neces-
sary to keep the run size to a minimum. Response surface
methodology (Myers and Montgomery 2002) may not be
useful because the underlying response surface encoun-
tered in nanoresearch can be very complex with multi-
ple local optima, and the binary nature of data adds to
the complexity. Space-filling designs such as Latin hy-
percube designs, uniform designs, and scrambled nets are
highly suitable for exploring complex response surfaces
with a minimum number of runs. They are now widely
used in computer experimentation (Santner, Williams, and
Notz 2003). However, they are used in the literature for
only one-time experimentation. We need designs that are
model independent, quickly “carve out” regions with no
observable nanostructure morphology, allow for the ex-
ploration of complex response surfaces, and can be used
for sequential experimentation.

2. Developing experimental strategies where one or more of
the control variables is a function of time. In experiments
for nanostructure synthesis, there are factors whose pro-
files or curves with respect to time are often crucial with
respect to the output. For example, although the peak tem-
perature is a critical factor, how this temperature is at-
tained over time is very important. There is an ideal curve
that is expected to result in the best performance. Plan-
ning and analysis of experiments with such factors (which
are called functional factors) are not discussed much in

the literature and may be an important topic for future re-
search.

3. Scale-up. One of the important future tasks of the nan-
otechnology community is to develop industrial-scale
manufacture of the nanoparticles and devices that are
rapidly being developed. This transition from laboratory-
level synthesis to large-scale, controlled, and designed
synthesis of nanostructures poses plenty of challenges.
The key issues to be addressed are rate of production,
process capability, robustness, yield, efficiency, and cost.
The following specific tasks may be necessary: (1) deriv-
ing specifications for key quality characteristics of nanos-
tructures based on intended usage [quality loss functions
(Joseph 2004) may be used for this purpose]; (2) ex-
panding the laboratory setup to simulate additional condi-
tions that are likely to be present in an industrial process;
(3) conducting experiments and identifying robust set-
tings of the process variables that will ensure manufactur-
ing of nanostructures of specified quality with high yield;
and (4) statistical analysis of experimental data to com-
pute the capability of the production process with respect
to each quality characteristic.

APPENDIX A: PROOF OF CONVERGENCE OF THE
PROPOSED ALGORITHM

For simplicity, consider a single predictor variable and assume that
ηij = βj xi , where βj is a scalar (i = 1,2, . . . ,N, j = 1,2,3). Let

Q(β1, β2, β3) = ∑N
i=1(

∑3
j=1 yij ηij − ni log(1 + ∑3

j=1 exp (ηij ))).

Recall that β
(k)
j

denotes the estimate of βj obtained after the kth
iteration. Then it suffices to show that (i) Q(β1, β2, β3) is a con-

cave function of βj , j = 1,2,3, and (ii) Q(β
(k+1)
1 , β

(k)
2 , β

(k)
3 ) ≥

Q(β
(k)
1 , β

(k)
2 , β

(k)
3 ).

It is easy to see that, for l = 1,2,3,

∂2Q

∂β2
l

= −
N∑

i=1

nix
2
i
eβlxi (1 + ∑

j �=l e
βj xi )

(1 + ∑3
j=1 eβj xi )2

≤ 0,

which proves the concavity of Q.

To prove (ii), we note that, for given β
(k)
2 , β

(k)
3 , the solution for β1

in the equation

N∑

i=1

(

yi1 − ni
eβ1xi

1 + eβ1xi + ∑3
j=2 e

β
(k)
j xi

)

xi = 0

maximizes Q(β1, β
(k)
2 , β

(k)
3 ).

From the first equation of (9) and Steps 1–3 of the algorithm, we
have

N∑

i=1

(

yi1 − ni
eβ

(k+1)
1 xi

1 + eβ
(k+1)
1 xi + ∑3

j=2 e
β

(k)
j xi

)

xi = 0,

which means β
(k+1)
1 = arg maxQ(β1, β

(k)
2 , β

(k)
3 ). Therefore, (ii)

holds.

APPENDIX B: PROOF OF CONVERGENCE OF THE
ESTIMATED COVARIANCE MATRIX

Again, for simplicity, consider a single predictor variable and as-
sume that ηij = βj xi , where βj is a scalar (i = 1,2, . . . ,N, j =
1,2,3). Let β

(k)
j

denote the estimate of βj obtained after Steps 1–3
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of the kth iteration and let β∗
j

denote the final estimate of βj obtained
by the proposed algorithm.

The estimated asymptotic variance of β
(k)
1 , denoted by s2(β

(k)
1 ),

is given by the negative expectation of ∂2 logLb1

∂β2
1

|
β

(k)
1 ,β

(k−1)
2 ,β

(k−1)
3

,

where logLb1 denotes the binomial log-likelihood function of yi1,
i = 1, . . . ,N , that corresponds to the first of the three equations in (9)
and is given by

logLb1 =
N∑

i=1

log

(
n

yi1

)

+
N∑

i=1

yi1(ηi1 + γi1)

− ni

N∑

i=1

log
(
1 + exp(ηi1 + γi1)

)
.

Now, s2(β∗
1 ), the estimated asymptotic variance of β∗

1 , is given by

the negative expectation of ∂2 logL

∂β2
1

|βj =β∗
j ,j=1,2,3, where logL is the

multinomial likelihood given by (6).
It can easily be seen that

∂2 logLb1

∂β2
1

= −
N∑

i=1

nix
2
i

1 + exp(ηi2) + exp(ηi3)

(1 + exp(ηi1) + exp(ηi2) + exp(ηi3))2

= ∂2 logL

∂β2
1

.

By convergence of β
(k)
j

to β∗
j

for j = 1,2,3, it follows that

s2(β
(k)
1 ) −→ s2(β∗

1 ).
Similarly, each component in the covariance matrix �β(k) can be

proven to converge to each component of �β∗ .

[Received June 2006. Revised February 2007.]
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