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Abstract

This paper reviews the recent progress in the following areas. (1) In quantitative high-resolution transmission electron microscopy,

the theoretically calculated images usually give better contrast than the experimentally observed ones although all of the factors have

been accounted for. This discrepancy is suggested due to thermal diffusely scattered (TDS) electrons, which were not included in the

image calculation. The contribution from TDS electrons is especially important if the image resolution is approaching 0.1 nm and

beyond with the introduction of Cs corrected microscopes. A more rigorous multislice theory has been developed to account for this

effect. (2) We proved that the off-axis holography is an ideal energy filter that even filters away the contribution made by TDS

electrons in the electron wave function, but conventional high-resolution microscopy do contain the contribution made by phonon

scattered electrons. (3) In electron scattering, most of the existing dynamical theories have been developed under the first order diffuse

scattering approximation, thus, they are restricted to cases where the lattice distortion is small. A formal dynamical theory is presented

for calculating diffuse scattering with the inclusion of multiple diffuse scattering. By inclusion of a complex potential in dynamical

calculation, a rigorous proof is given to show that the high order diffuse scattering are fully recovered in the calculations using the

equation derived under the distorted wave Born approximation, and more importantly, the statistical time and structure averages over

the distorted crystal lattices are evaluated analytically prior numerical calculation. This conclusion establishes the basis for expanding

the applications of the existing theories. (4) The ‘frozen lattice’ model is a semi-classical approach for calculating electron diffuse

scattering in crystals arisen from thermal vibration of crystal atoms. Based on a rigorous quantum mechanical phonon excitation theory,

we have proved that the frozen lattice mode is an excellent approximation and no detectable error would be possible under normal

experimental conditions.

q 2003 Elsevier Ltd. All rights reserved.
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1. Introduction

There are several main advances in the instrumentation

of electron microscopy in recent years. First, the

development of monochromator narrows the electron

energy spread to the order of meV range, which not

only drastically reduces the chromatic aberration effect

but also allows much improved beam coherence. The

implementation of the energy filter gives us the capability

of selecting the energy of the output signals for imaging

and diffraction. The energy filter filters off the contri-

bution made by inelastically scattered electrons with

energy losses larger than a few eV, thus, the calculated

results based on elastic scattering theory can be directly

compared to the experimental data. The Cs corrector

(Batson et al., 2002), the electron holography (Fu et al.,

1991) and image reconstruction technique (Zandbergen

and Van Dyck, 2000) are powerful approaches not only

for extension of the resolution of the electron imaging, but

also for retrieving electron phase image. Quantitative

electron microscopy with sub-Angstrom image resolution

is now experimentally feasible.

With the vast development in experimental approaches,

one must re-examine the theories developed before 1960s

for image and diffraction calculations to see if any effect

that was not important back to then but is vital in today’s

super-resolution microscopy. We know that an energy

filter filters away most of the inelastically scattered

electrons, but electrons with an energy-loss less than a

sub eV remain in the image formation process. This

means that phonon scattered, or thermal diffuse scattered
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(TDS), electrons are included in imaging. The theories

most popularly used for today’s image simulations,

however, are for elastic scattering and the contribution

made phonon scattering is excluded. This is not a main

problem if the image resolution is poorer than 0.2 nm. But

as the image resolution is reaching 0.1 nm and even

better, an inclusion of phonon scattering in image

calculation is mandatory.

The objective of this paper is to illustrate the effect of

TDS in sub-Angstrom resolution electron microscopy and

electron holography. Some of the recently theoretical

approaches developed are reviewed. We first start from

the phenomenon of TDS, then address the effects of TDS

in several types of image formation process. Finally, we

will examine the ‘absorption potential’ introduced in

electron scattering and to show its relationship with high-

order TDS.

2. Phonon scattering in electron diffraction

Atomic vibration is the source of phonon scattering.

The vibration of each atom consists of many modes

having different frequencies and wave vectors. Each

mode is known as a phonon. The effect of phonons on

electron scattering is characterized by its perturbation on

the crystal potential. This perturbation potential may not

be periodic, so that diffuse scattering distributed between

Bragg beams is generated. Shown in Fig. 1 is an electron

diffraction pattern recorded from GaAs, where some

diffuse streaks are clearly visible in the vicinity of Bragg

spots. These streaks are the result of thermal diffuse

scattering due to the excitation of phonons. TDS may

have the following characteristics. First, TDS is closely

related to the specimen temperature and it increases

dramatically as temperature increases. Second, due to the

correlation among atom vibrations, fine diffuse scattering

streaks are observed, which are usually oriented along

the interconnection lines between Bragg spots. Third, the

diffuse scattering intensity is distributed at angles other

than Bragg angles owing to the non-periodic perturbation

to the crystal potential. Finally, the intensity is distributed

at higher scattering angles due to large momentum

transfer in TDS, but negligible energy-loss. A detailed

analysis of the diffuse streaks can give some information

about atomic interaction in solids (Wang, 1993). TDS is

also mainly responsible to the Kikuchi patterns observed

in electron diffraction. A recent dynamic calculation by

Omoto et al. (2002) gives excellent agreement with the

experimental data.

3. Effects of phonon scattering on elastic wave

Phonon scattering exists in any electron microscopy

experiments performed at ambient temperatures. In a

general approach, the crystal potential is written as a sum

of time-independent and time-dependent components

(Takagi, 1958)

Vðr; tÞ ¼ V0ðrÞ þ DVðr; tÞ; ð1Þ

where V0ðrÞ ¼ kVðr; tÞl represents the time averaged crystal

potential, and it is determined by the equilibrium positions

of the atoms and is responsible for the Bragg reflected

intensities; and the DV term is the perturbation of the

thermal vibration on the crystal potential and it is the source

of diffuse scattering

DVðr; tÞ ¼
X

i

½Viðr 2 ri 2 uiðtÞÞ2 Vi0ðr 2 riÞ�; ð2Þ

where ri is the equilibrium position of the ith atom (with

potential Vi), and ui is the time-dependent displacement of

the atom from its equilibrium position. ui is usually a non-

periodic function, and so is DV :

To see the relative magnitude of DV to V0; Fig. 2 shows

the calculated instantaneous potential V ; thermal equili-

brium potential V0; and the difference DV ¼ V 2 V0 for a

silicon atom using the experimentally determined mean

square root vibration amplitude of Si. If the instantaneous

position of the atom is its equilibrium lattice site, DV is a

symmetric, sharp function. If the atom is displaced to an

instantaneous position located at 0.068 Å on the left-hand

side from the equilibrium site, DV is no longer symmetric

(Fig. 2b). Two striking characteristics are noticed. Firstly,

the magnitude of DV is comparable with that of V0 and this

Fig. 1. Electron diffraction pattern recorded from GaAs, showing the

presence of diffuse scattering streaks between the Bragg reflections due to

thermal vibration of the atoms in the crystals. The circle indicates the

frequency corresponding to 0.05 nm resolution. The TDS streaks will

strongly affect the contrast of electron image at the atom sites when the

image resolution approaches 0.1 nm and beyond.
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is true for each atom present in the specimen. Secondly, DV

is considerably narrower than V0; indicating that TDS is a

rather localized scattering process, with the majority of the

electrons being generated from the nuclear sites. It is

apparent that the TDS is a very localized scattering process.

In high-resolution transmission electron microscopy

(HRTEM), as the image resolution is approaching 1 Å, the

image contrast at the atomic columns is likely to be affected

by TDS. It is necessary to take this component into

consideration in image calculation if quantitative data

analysis is needed.

3.1. The Debye–Waller factor

Vibration of crystal lattices is an important phenomenon

in solid state physics, which is a result of thermal motion of

crystal atoms. The crystal potential responsible for Bragg

reflections is a time averaged potential, which can be

conveniently written in its Fourier transform of the electron

scattering factor f e
i ðtÞ;

V0ðrÞ ¼
X

i

½Viðr 2 ri 2 uiðtÞ�

* +

¼
X

i

ð
dtf e

i ðtÞexp½2pitðr 2 ri 2 uiðtÞ�

* +

¼
X

i

ð
dtf e

i ðtÞexp½2pitðr 2 riÞ�kexpð2pituiðtÞÞl

¼
X

i

ð
dtf e

i ðtÞexp½2WiðtÞ�exp½2pitðr 2 riÞ�; ð3Þ

where WiðtÞ ¼ 2p2kltuil
2l ¼ 2p2 �u2

i t
2 is the Debye–Waller

factor involved in electron diffraction and image calcu-

lations, and �u2
i is the mean square displacement of the atom.

Fig. 2. Potential of a silicon atom with ðV0Þ and without ðVÞ including the Debye–Waller factor. V is the instantaneous atomic potential and V0 is the time-

averaged atomic potential. The equilibrium position of the atom is b ¼ 0: DV ¼ V 2 V0 (dash-dotted line) is the deviation of the atomic potential from the time

averaged potential V0 when the atomic displacement is (a) uk ¼ 0 or (b) uk ¼ 20:068 Å. The arrowhead in (b) indicates the displacement of the atom. The

mean square-root atom vibration amplitude was taken as 0.07 Å in the calculation.
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This factor depends sensitively on temperature and the

structure of the crystal and it is a parameter usually

unknown for complex structures, although it has been

documented for some simple metals and semiconductors. In

the Debye model and under the harmonic oscillator

approximation, the Debye–Waller factor can be calculated

by Sears and Shelley (1991)

�u2
i ¼

3"2

MikBTD

T2

T2
D

ðTD=T

0
dx

x

expðxÞ2 1
þ

1

4

( )
; ð4Þ

where TD is the Debye temperature, kB the Boltzman

constant, and Mi the mass of the atom. The Debye–Waller

factor has been tabulated using an empirical parameteriza-

tion approach (Peng et al., 1996).

It is apparent that the Debye–Waller factor is the result

of atomic thermal vibration on the periodic potential V0 of

the crystal, which represents the reduction of the Bragg

reflected intensities by the atomic vibration. The intensity

taken away from the Bragg reflections is distributed

between the Bragg angles, e.g. the diffuse scattering. The

Debye–Waller factor is a key parameter in quantitative

microscopy.

3.2. The absorption potential

In conventional diffraction-contrast imaging, the images

are formed by selecting a single Bragg reflected beam

using a small objective aperture, so that any electrons

inelastically scattered out the angular range of the aperture

do not contribute to the image and are thus considered to

have been ‘absorbed’. From the above discussion, the

inelastically scattered electrons will be distributed at angles

other than the Bragg angles; thus, they are considered to be

effectively absorbed by the crystal as long as the elastically

scattered wave is concerned. This is the reason that

inelastic scattering is normally considered to be an

absorption effect in the imaging of Bragg reflected

electrons. The absorption potential is another key quantity

in structure determination.

The inclusion of an imaginary potential in the dynamic

calculation accounts only for the reduction of the elastic

intensity by the inelastic scattering (Yoshioka, 1957). It has

not considered the contribution made by the inelastically

scattered electrons to the image/diffraction pattern. Inelas-

tically scattered electrons falling inside the angular selection

range of the objective aperture do contribute to the image/

diffraction pattern. The absorption effect used in electron

diffraction is only a phenomenological treatment of the

‘loss’ of electrons due to inelastic scattering. In practice, the

inelastically scattered electrons are not lost but distributed at

angles other than the Bragg angles. This is a point that can

be easily misunderstood.

The calculation of absorption potential is rather

complex, depending on the physical model and the

inelastic scattering processes (for a review see Chapter 6

in Wang (1995) and Fanidis et al. (1992, 1993)). The

relationship between the absorption potential and multiple

diffuse scattering and its calculations will be given in

follows.

4. Application of phonon scattered electrons in

high-angle annular dark-field STEM imaging

Determining the lattice structure and the atom types

filling the lattices are two critical steps in characterization

of functional materials. Most of the chemical imaging has

been performed in scanning electron microscopy (SEM)

and scanning transmission electron microscopy (STEM).

The characteristic inelastic scattering signals emitted from

the interaction volume of the electron probe with the

specimen are determined by the thickness-projected

elemental concentrations, provided there is no beam

broadening and no fluctuation in incident beam current.

X-rays and Auger electrons are acquired sequentially as a

function of the electron scanning position. Chemical

images obtained using x-ray signals can be directly

correlated with the thickness-projected elemental maps

in the specimen. The images are more sensitive to

elements with large atomic numbers than those with

small Z’s. The images formed using Auger signals are

sensitive to light elements distributed within 1–2 nm into

the surface of the specimen.

The dominant contribution of TDS to the annular dark-

field STEM image was first proposed by Wang and Cowley

(1989, 1990). The localization of phonon excitation can be

seen in the calculated single atom scattering factor for

elastic and thermal diffuse scattering (Fig. 3). It is apparent

that the low angle scattering is dominated by elastic

scattering, while the high angle scattering is dominated by

TDS. This dominant effect is apparent when the scattering

angle is larger than that for the (880) reflection from Si. At

the first order Laue zone (FOLZ) position, TDS is about six

times stronger than the elastic scattering. In STEM, if an

annular-dark-field (ADF) detector is positioned to collect

the electrons that are scattered to high angles, the image

contrast is insensitive to diffraction and phase contrast but is

sensitive to the projected atomic number, because at high

scattering angles, the atomic scattering factor is approxi-

mated by

f e
k ðsÞ ¼

e

16p210

½Z 2 f x
k ðsÞ�

s2
<

e

16p210

Z

s2
for large s; ð5Þ

where f x is the X-ray scattering factor. The scaling of f e
k ðsÞ

with Z is the basis of Z-contrast imaging (Crewe, 1978;

Pennycook and Jesson, 1990), provided there is no

complication from dynamic electron diffraction effect.

Based on the reciprocity theorem, an analogous Z-

contrast image can be formed in TEM using an on-axis

objective aperture with hollow cone beam illumination, in

which the incident beam strikes the specimen at an angle
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and the beam is conically scanned around a circle. Atomic-

resolution, Z-dependent images have been achieved (Wang,

1994; Geipel and Mader, 1996; Sidorov et al., 1997). This

type of images has characteristics similar to the high-angle

ADF-STEM images.

Back scattering is a typical phenomenon of large-

angle TDS. Electrons are scattered for an angle larger

than 908 without a huge energy-loss. This type of

scattering is very sensitive to the atomic number of the

scattering source and it has been applied to form the

electron backscattered pattern (EBSP) in SEM (Garmes-

tani et al., 1998; Goyal et al., 1997). For a semi-infinite

specimen in SEM, the backscattered electrons generated

inside the specimen suffer dynamic diffraction by the

crystal lattices. The large angle divergence of the TDS

results in the formation of Kikuchi pattern, which is a

unique representation of the specimen orientation. By

indexing the Kikuchi pattern for each of the incident

electron probe position, an orientational image can be

obtained across the specimen. This is a very useful

technique for quantifying the texturing and grain

orientational distribution in thin films and bulk

specimens.

Backscattered electrons in STEM (or SEM) (Goldstein

et al., 1992) give a composition-sensitive image because the

atomic backscattering factor is proportional to the average

atomic number Z at the beam illumination region due to the

dominant roles of Rutherford and thermal diffuse scattering

at high angles. This type of image can provide useful

information about the average mass density at the local

region, but it cannot discriminate the contributions made by

different elements.

5. The frozen lattice model for phonon scattering—how

accurate is it?

In dealing with the effect of TDS in electron diffraction, a

frozen lattice model is usually introduced for the conven-

ience of physical approach (Hirsch et al., 1977), which

means that, although atom vibration is a time-dependent

process, the crystal lattice appears as if in a stationary

instantaneous configuration for an incident electron since

the interaction time of the electron with the crystal is much

shorter than the vibration period of the crystal atom, but the

crystal lattice can be in another configuration for the next

incoming electron due to the fact that the average distance

between two successive incident electrons is ,1 m in TEM.

Thus, for each lattice configuration, the scattering of the

electron can be considered as a time-independent quasi-

elastic scattering process, and the final observed diffraction

pattern/image is equivalent to a time average on the

intensities calculated for the different lattice configurations.

This model is the basis of many theoretical approaches

for treating phonon scattering (or thermal diffuse scattering,

TDS) in electron diffraction/imaging, and a quantitative

agreement with experimental observation has been

achieved (Loane et al., 1991; Muller et al., 1997). There

are, however, two major concerns about this model. First,

this is a quasi-elastic scattering model in which the

electrons diffusely scattered by one lattice configuration

are considered coherent although the scattering from

different lattice configurations are treated incoherently.

This deviates from the fundamental result of quantum

mechanics that phonon scattering is an incoherent process,

and phonon excitation is a transition process. Secondly, this

Fig. 3. Theoretically calculated atom scattering factors for elastic scattering ½ðf eÞ2{expð22WÞ�} and thermal diffuse scattering ½ðf eÞ2{1 2 expð22WÞ�} of a Si

atom, showing the dominant contribution of TDS at high scattering angles, where W is the Debye–Waller factor. The scattering vector s ¼ g=2: The mean

square root atomic vibration amplitude was taken as 0.07 Å in the calculation.

Z.L. Wang / Micron 34 (2003) 141–155 145



model treats a time-dependent atom vibration process as an

integration of many individual time-independent processes.

Thus, some semi-classical concept is introduced in this

quantum excitation process. Thus, the question is whether

this model can give an accurate account of the phonon

excitation.

Based on rigorous Green’s function and density matrix

theories, it has been proved (Wang, 1998a) that the

calculation based on the frozen lattice model for thermal

diffuse scattering in electron diffraction gives an identical

result to that obtained from the phonon excitation model

if the following two conditions are satisfied: (1) the

incoherence between different orders of thermal diffuse

scattering is considered in the frozen lattice model

calculation; and (2) the specimen thickness and the

mean-free-path length for phonon excitation are both

much smaller than the distance traveled by the electron

within the life-time of the phonon. Conditions (2) is

absolutely satisfied by both low and high energy

electrons, and satisfying condition (1) is the most critical

requirement in the frozen lattice model calculation. More

specifically, the diffuse scattering produced by the

different orders of diffuse scattering (such as DV2; DV4

and DV6; etc. or multiple diffuse scattering) must be

treated as incoherent in the frozen lattice model, and the

higher order scattering is the result of multiple incoherent

first order scattering events. This incoherence can be

precisely accounted for with the introduction of the

mixed dynamic form factor SðQ;Q0Þ (Wang, 1995b), a

key quantity for inelastic electron scattering. A new

multislice approach has been proposed recently in which

the multiple diffuse scattering and the incoherence effects

are both accounted for using the SðQ;Q0Þ function

(Wang, 1998b).

The frozen lattice model can also be used to calculate the

diffuse diffraction of low energy electron because their

effective penetration depth is relatively small (Wang,

1998a). This conclusion confirms the validity, reliability

and accuracy of using the frozen lattice model in numerous

dynamic theories of phonon excitation in electron diffrac-

tion and imaging of thin specimens. This also removes a

restriction that the frozen lattice model is valid only for

high-energy electrons.

6. How does phonon scattering affect off-axis electron

holography?

Electron holography is a rapidly developing field in

electron microscopy and it gives many promises to solve

some of the unique problems in materials science and

physics (Tonomura, 1993; Fu et al., 1991). An important

characteristic of holography is the ability to recover both

the amplitude and phase components of the complex exit

wave of the object. Electron holograms are the results of

electron wave interference. Electrons with appreciable

energy-loss have lost their coherence with the incident

reference wave, thus, they will not contribute to the

interference fringes, automatically being filtered. The

question is if the TDS electrons will contribute to

the electron hologram. We now use the off-axis electron

hologram to examine this problem.

The off-axis electron holography is a two-step imaging

technique (Fig. 4). The first step is to form a hologram by

means of an electrostatic biprism, inserted, for example,

between the back focal plane of the objective lens and the

intermediate image plane. The specimen is positioned to

cover half of the image plane, leaving the other half of the

incident wave for the reference wave expði2pK·rÞ; which is

a plane wave with K as the wave vector of the incident

electrons. By applying a positive voltage to the filament of

the biprism, the reference and the object waves on the two

sides of the biprism are deflected towards each other, to

directions K1 and K2; respectively, forming an interference

pattern in the image plane, i.e. a hologram. If the exit

wave of the object after being modified by the aberration

effect of the objective lens and the specimen is represented

by ½expði2pK·rÞAðx; yÞexpðifðx; yÞÞ�; where Aðb; tÞ and

fðb; tÞ are real functions describing the amplitude and

phase, respectively, the measured intensity distribution in

the hologram is

IholðbÞ ¼klexpði2pK1·rÞ þ expði2pK2·rÞAðb; tÞ

� exp½ifðb; tÞ�l2l ¼ 1 þ kA2ðb; tÞlþ 2kAðb; tÞ
� cos½fðb; tÞ þ 2pDK·r�l; ð6Þ

where DK ¼ K1 2 K2: k l is an average over time, which

means that the recorded intensity distribution is the result of

electron scattering by the specimen with different thermal

vibrational configurations of the lattice.

The second step is to reconstruct the hologram in order to

get the object wave. Using the computing reconstruction

method, a Fourier transform (FT) of the hologram is taken,

FT½IholðbÞ� ¼dðuÞ þ FT½kA2ðb; tÞl� þ FT½kAðb; tÞ
� expðifðb; tÞlÞ p dðu þ DKÞ þ FT½kAðb; tÞ
� expð2ifðb; tÞlÞ p dðu 2 DKÞ; ð7Þ

where p indicates a convolution calculation, the dðuÞ

function is the transmitted (000) beam; u is a reciprocal

space vector; the second term is the autocorrelation term

that is located near the center of the diffraction pattern; and

the last two terms are centered at u ¼ 2DK and u ¼ DK;

respectively, and are the so called ‘sidebands’. To see the

effect of TDS in Eq. (2), the time-dependent and time-

independent parts are separated as

Aðb; tÞexp½ifðb; tÞ�

¼ A0ðbÞexp½if0ðbÞ� þ DAðb; tÞexp½if0ðb; tÞ�; ð8aÞ

where

A0ðbÞexp½if0ðbÞ� ¼ kAðb; tÞexp½ifðb; tÞ�l; ð8bÞ
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and

kDAðb; tÞexp½if0ðb; tÞ�l ¼ 0: ð8cÞ

Using the notations defined in Eqs. (8a)–(8c), Eq. (7)

becomes

FT½IholðbÞ� ¼dðuÞ þ FT½A2
0ðbÞ� þ FT½kDA2ðb; tÞl�

þ FT½A0ðbÞexpðif0ðbÞÞ� p dðu þ DKÞ

þ FT½A0ðbÞexpð2if0ðbÞÞ� p dðu 2 DKÞ: ð9Þ

If the carrier spatial frequency DK is sufficiently large, the

sidebands do not overlap with the center band. By selecting

only one sideband, say the band centered at u ¼ 2DK; the

electron wave function at the exit face of the specimen can

be recovered to be kCðx; y; tÞl: The reconstructed wave is a

time averaged complex object wave, and can therefore be

compared directly with the calculated electron wave

function.

It is clear that TDS electrons (i.e. the FT½kDA2ðb; tÞl�
term in Eq. (9)) is distributed only in the center band. This

indicates that the TDS electrons will not contribute to the

finally reconstructed phase image because it comes from the

sideband (Wang, 1993). The only effect of TDS is to

introduce an absorption function in the reconstructed

amplitude image due to the time average. Therefore, it is

possible that electron holography is an ideal energy-filter

that even rules out the contribution made by TDS electrons

if the electron source is monochromatic.

An experimental approach has been designed to test this

prediction (Van Dyck et al., 2000). By simultaneously

recording the off-axis electron hologram and the on-axis

focal series of high-resolution TEM images from the same

specimen region and under identical experimental con-

ditions, the wave functions carried by the hologram and the

high-resolution TEM images can be reconstructed, respect-

ively, following the standard procedures (Zandbergen and

Van Dyck, 2000). Such an experiment has been carried out

by Lehmann and Lichte (2002), who found that the lattice

fringe contrast reconstructed from the sideband is substan-

tially higher than the contrast from HRTEM, and they

suggested that the discrepancy is due to inelastic scattering.

This conclusion proves the theoretically predicted result.

7. How does phonon scattering affect atomic-resolution

lattice imaging?

As the image resolution is approaching 1 Å, quantitative

matching of experimental images with the theoretically

calculated images is needed for quantitative structure

determination. Most of the available image calculation

packages were developed with consideration of the

contribution made by elastically scattered electrons, and

Fig. 4. (a) Formation of off-axis electron hologram in TEM using an electrostatic biprism, and (b) reconstruction of electron hologram using laser diffraction.
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we are always puzzled why the calculated image, with

consideration of all the possible instabilities in the

experiments, has a better contrast than the observed

image? One of the unresolved question is how does the

TDS electron affect the image.

Before answering this question, one must examine the

importance of TDS in electron diffraction and imaging.

Shown in Fig. 5 is a group of energy-filtered electron

diffraction patterns at high scattering angles, where the

Kikuchi lines are clearly present. The patterns were formed

by the electrons with different energy-losses so that the

contributions made by the different processes can be

separated. A line scan is made across the diffraction pattern

for quantitative comparison purpose. In the pattern formed

Fig. 5. Large angle Kikuchi patterns of Si recorded (a) without energy filtering, (b) using the electrons without energy-loss, and (c) with plasmon loss. (d) A

thickness/mean-free-path image calculated from (a) and (b). The line scan profiles of the images are also shown to compare the absolute intensities.
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by the electrons with energy losses smaller than the energy

spread of the filament, typically 1.5 eV, the dominant

contribution is TDS (Fig. 5b) because the elastic Bragg

scattering does not fall into the angular range shown. The

intensity taken by the first plasmon peak of GaAs is ,10%

of the total intensity (Fig. 5c). The specimen thickness can

be seen in the t=L image, where t is specimen thickness and

L the electron mean free path length, which is ,80 nm for

GaAs. For a specimen of thickness ,100 nm, the average

intensity contributed by pure TDS electrons at high angles is

,27% of the total intensity excluding the component with

larger energy-losses. These electrons come from the nuclear

sites, and they can strongly affect the image contrast

especially when the image resolution is high (Wang, 1999).

To simplify our discussion, the weak phase object

approximation is used to illustrate the contribution made

by TDS electrons in HRTEM images. The electron wave

after exiting the crystal surface can be represented by

FðbÞ < 1 þ isVpðbÞ ¼ 1 þ isVp0ðbÞ þ isDVpðb; tÞ; ð10Þ

where s ¼ p=lU0;b ¼ ðx; yÞ; l the electron wave length,

U0 the electron acceleration voltage, and Vp the instan-

taneous crystal projected potential. Taking a Fourier

transform of the wave function

FðuÞ < dðuÞ þ isFT½Vp0ðbÞ� þ isFT½DVpðb; tÞ�; ð11Þ

where the first term is the center transmitted beam, the

second term the Bragg reflected beams and the third term

the diffusely scattered electrons. From the Abbe’s imaging

theory, the intensity seen in the image plane is

IðbÞ ¼ kl½1 þ isVp0ðbÞ þ isDVpðb; tÞ� p tobjðbÞl
2l; ð12Þ

where tobjðx; yÞ characterizes the information transfer of the

objective lens and it is a Fourier transform of the objective

lens transfer function TobjðuÞ; and k l represents the time

average of the image intensity. With the use of kDVl ¼ 0;

the result is

IðbÞ ¼1 2 2sVp0ðbÞ p Im½tobjðbÞ� þ s2lVp0ðbÞ p tobjðbÞl
2

þ s2klDVpðb; tÞ p tobjðbÞl
2l; ð13Þ

where the first term is the incident beam, the second term is

the interference between the center beam with the Bragg

diffracted beams (the first order effect), e.g. the bright-field

lattice image, the third term is the interference between the

Bragg reflected beams (the second order effect), and the last

term is the contribution made by TDS (the second order

effect). This equation clearly shows that the contribution

made by TDS is on the same order of magnitude as the cross

interference term between Bragg beams (Fig. 6a) excluding

the central transmitted beam (Wang, 1998c), since DV is

comparable to V0 according to Fig. 2.

On the image contrast, the second term (the bright field

term) can produce contrast reversal as the lens defocus is

changed, but the intensity contributed by TDS is always the

strongest at the atom sites. Therefore, at the Schertzer

defocus condition under which the atomic columns show

dark contrast, adding the TDS contribution reduces the

darkness of the atom columns, resulting in a decrease in the

image contrast (see Fig. 6b), possibly giving a better fit to

the experimental image. This is the importance of TDS in

HRTEM. This simple physical illustration can be spelled

out using full quantum mechanical approach, leading to a

new theory for calculating the images formed by phonon

scattered electron in HRTEM with inclusion of full dynamic

effects (Wang, 1998b). Most of the software packages

currently available for image and diffraction pattern

simulations, however, do not include the contribution

made by TDS.

8. Dynamic diffraction theory of diffusely scattered

electrons

Conventional HRTEM is dominated by phase-contrast,

which is the coherent interference property of elastically

scattered waves. The HRTEM images are usually recorded

without the use of an energy filter, so that both the

elastically and inelastically scattered electrons contribute to

the image. The inelastically scattered electrons tend to

reduce the image contrast due to their incoherence and the

effects of chromatic aberration. This makes quantitative

data analysis difficult because only the elastic scattering of

electrons can be accurately simulated using dynamic

theories. For consideration of the excitation probabilities

Fig. 6. (a) Lattice images can be formed by the interference of the central

transmitted beam (000) and the diffracted beams. The cross-interference

between the Bragg beams is the second order effect, which is equivalent to

the contribution made by TDS in the imaging. (b) The reduction of the

image contrast at the atom sites due to TDS under the Schertzer defocus.
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of inelastic processes, TDS and plasmon excitation are the

two main concerns. The image formed by the plasmon-loss

electrons can be effectively represented by a defocus shift

due to chromatic aberration (Wang and Bentley, 1991).

These electrons can be filtered away experimentally, but the

TDS electron remain. Our following analysis is concen-

trated on TDS electrons.

Diffuse scattering is produced by structure modulation

in a crystalline specimen, and it is usually distributed

between the Bragg reflected peaks. The Bragg reflections

are generated by the periodically structured lattice of the

crystal, while the diffuse scattering is produced by the

non-periodical components including thermal vibrations of

the crystal atoms and short-range order (SRO) of defects.

TDS exists even for a perfect crystal without defects

because atomic vibration is a non-periodic perturbation on

the crystal potential. The typical character of diffuse

scattering produced by SRO is that the patterns are

complex, while the diffuse streaks in TDS case are usually

along the interconnection lines among the Bragg reflec-

tions. This is likely due to the statistical correlated

distribution of point defects. These patterns contain the

spatial correlation function of the point defects, but their

analysis is rather difficult because of the complication

from dynamic diffraction effects.

8.1. The first order diffuse scattering theory

In this section, we present a general approach for dealing

with diffuse scattering, produced by both phonons and point

defects, in electron diffraction with consideration of full

dynamic diffraction effects. There are three key challenges

to the dynamic theory for diffusely scattered electrons. First,

the theory should be able to include non-periodic structure

in the calculation. Second, the contributions made by a

variety of statistically distributed thermal vibration con-

figurations of the lattice as well as the spatial variation in

distribution of point defects must be summed incoherently,

e.g. I ¼ klCl2l: More importantly, a time and configuration

average is required to be performed analytically before

numerical calculation. Finally, the high order diffuse

scattering may also need to be taken into account for

thicker specimens.

The first order scattering theory demonstrated below are

adequate for solving the first two challenges. For simplicity,

we start from the time-independent Schrödinger equation by

separating the crystal potential into a periodic component

and a non-periodic one,

2
"2

2m0

7
2
2 eV0 2 eDV 2 E

 !
C ¼ 0: ð14Þ

For diffraction calculation, the Green’s function theory is

the most convenient choice. Shifting the DV term to the

right-hand side, Eq. (14) is converted into an integral

equation with the use of the Green’s function Gðr; r1Þ

(Kainuma et al. 1976):

Cðr; tÞ ¼ C0ðK0; rÞ þ
ð

dr1Gðr; r1Þ½eDVðr1; tÞCðr1; tÞ�;

ð15Þ

where G is the solution of

2
"2

2m0

72 2 eV0 2 E

 !
Gðr; r1Þ ¼ dðr 2 r1Þ; ð16Þ

and C0ðK0; rÞ is the elastic wave scattered by the periodic,

time-independent average potential V0 due to an incident

plane wave with wave vector K0 and it satisfies

2
"2

2m0

72 2 eV0 2 E

 !
C0 ¼ 0: ð17Þ

Eq. (17) can be solved using the Bloch wave or multislice

theory (Van Dyck, 1985; Chen and Van Dyck, 1997). It

must be pointed out that the time variable in Eq. (15)

represents the instantaneous lattice configuration of the

crystal due to thermal vibration. The diffraction pattern is

calculated under the first order diffuse scattering approxi-

mation: Cðr1; tÞ is replaced by C0ðK0; r1Þ in Eq. (15),

leading to

Cðr; tÞ <C0ðK0; rÞ þ
ð

dr1Gðr; r1Þ½eDVðr1; tÞ

�C0ðK0; r1Þ�: ð18Þ

This approximation holds if the diffuse scattering is much

weaker than the Bragg reflections, and it is a good

approximation for a general purpose (Fanidis et al., 1989).

A detailed application of Eq. (18) to the diffraction of

diffuselly scattered electrons arisen from TDS and SRO has

been given elsewhere (Wang, 1996a).

8.2. High order diffuse scattering theory

Since our calculation is made based on the first order

diffuse scattering approximation, the higher-order diffuse

scattering terms are dropped. This approximation fails if the

specimen is thick and/or the disorder is high. We now

modify the solution C0 of Eq. (17) to compensate for these

high order diffuse scattering terms so that the theory can be

expanded to cases unrestricted by the first order diffuse

scattering approximation. A correction potentialV ðiÞ is

symbolically introduced,

2
"2

2m0

72 2 eV0 2 eV ðiÞ 2 E

 !
C0 ¼ 0: ð19Þ

The potential V ðiÞ is chosen so that Eq. (28) exactly

satisfies the original Schrödinger Eq. (14), which requires

the potential V ðiÞ to be

½V ðiÞC0� ¼e
ð

dr1½Gðr; r1ÞDVðr; tÞDVðr1; tÞ

�C0ðK0; r1Þ�: ð20Þ
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We now prove that the potential V ðiÞ given by Eq. (20) can

be applied to recover the high order diffuse scattering terms

dropped when Cðr1; tÞ is replaced by C0ðK0; r1Þ in deriving

Eq. (18) under the first order diffuse scattering approxi-

mation (Wang, 1996b). Starting from the integral form of

Eq. (19) with the use of the Green’s function and iterative

calculation, the elastic wave is expanded as

C0ðK0; rÞ ¼C
ð0Þ
0 ðK0; rÞ þ e

ð
dr1Gðr; r1Þ

� ½V ðiÞðr1C0ðK0; r1Þ� ¼ C
ð0Þ
0 ðK0; rÞ

þ e2
ð

dr1Gðr; r1Þ
ð

dr2½Gðr1; r2ÞDVðr1; tÞ

� DVðr2; tÞC0ðK0; r2Þ� ¼ C
ð0Þ
0 ðK0; rÞ

þ e2
ð

dr1

ð
dr2Gðr; r1ÞGðr1; r2ÞDVðr1; tÞ

� DVðr2; tÞC
ð0Þ
0 ðK0; r2Þ þ e4

ð
dr1

ð
dr2

�
ð

dr3

ð
dr4Gðr; r1ÞGðr1; r2Þ

� Gðr2; r3ÞGðr3; r4ÞDVðr1; tÞDVðr2; tÞ

� DVðr3; tÞDVðr4; tÞC
ð0Þ
0 ðK0; r4Þ þ · · · ð21Þ

where C
ð0Þ
0 is the Bragg scattered wave due to the average

periodic lattice at the absence of V ðiÞ (e.g. no absorption)

2
"2

2m0

72 2 eV0 2 E

 !
C

ð0Þ
0 ¼ 0: ð22Þ

This equation can be solved using conventional dynamic

electron diffraction theory (for a comprehensive review see

Wang (1995)). Substituting Eq. (21) into Eq. (18), the total

scattered wave is

Cðr; tÞ ¼C
ð0Þ
0 ðK0; rÞ þ e

ð
dr1Gðr; r1ÞDVðr1; tÞ

�C
ð0Þ
0 ðK0; r1Þ þ e2

ð
dr1

ð
dr2Gðr; r1ÞGðr1; r2Þ

� DVðr1; tÞDVðr2; tÞC
ð0Þ
0 ðK0; r2Þ þ e3

ð
dr1

ð
dr2

�
ð

dr3Gðr; r1ÞGðr1; r2ÞGðr2; r3ÞDVðr1; tÞ

� DVðr2; tÞDVðr3; tÞC
ð0Þ
0 ðK0; r3Þ

þ e4
ð

dr1

ð
dr2

ð
dr3

ð
dr4Gðr; r1ÞGðr1; r2Þ

� Gðr2; r3ÞGðr3; r4ÞDVðr1; tÞDVðr2; tÞ

� DVðr3; tÞDVðr4; tÞC
ð0Þ
0 ðK0; r4Þ þ · · · ð23Þ

This Born series is the exact solution of Eq. (14) without

making any approximation. The third term in Eq. (23)

is taken as an example to show its physical meaning.

The Bragg scattered wave is diffusely scattered at r2 by

DVðr2; tÞ: The diffusely scattered wave is elastically

scattered by the crystal lattice while propagating from r2

to r1 ½Gðr1; r2Þ�; then, the second order diffuse scattering

occurs at r1 ½DVðr1; tÞ�: Finally, the double diffusely

scattered wave exits the crystal at r after elastic scattering

when propagating from r1 to r ½Gðr; r1Þ�: The integrals over

r1 and r2 are to sum over the contributions made by all of the

possible scattering sources in the crystal.

Therefore, the multiple diffusely scattered waves are

comprehensively included in the calculation of Eq. (18) if

the optical potential V ðiÞ given by Eq. (20) is introduced in

the calculation of C0 Eq. (1). This is a key conclusion which

means that, by introducing a proper form of the optical

potential, the multiple diffuse scattering terms are auto-

matically included in the calculation using Eq. (18),

although it was derived for the first order diffuse scattering.

This result has a strong impact on the conventional diffuse

scattering theories developed based on the first order diffuse

scattering. Thus, an introduction of a complex potential V ðiÞ

in the calculation of the elastic wave makes the existing

theories available for calculating the TDS and SRO

including all orders of effects. This conclusion is universal

for a time-independent system because no assumption and

approximation was made in the proof.

We now examine the optic potential V ðiÞ; which is

determined by

½V ðiÞC0� ¼e
ð

dr1½Gðr; r1ÞkDVðr; tÞDVðr1; tÞl

�C0ðK0; r1Þ�; ð24Þ

To examine the meaning of Eq. (24), one ignores the

diffraction effect of the crystal so that the Green’s function

is replaced by its free-space form:

G0ðr; r1Þ <
2m0

"2

expð2piKlr 2 r1lÞ
4plr 2 r1l

; ð25Þ

using the dynamic form factor defined in following

kDVðr1; tÞDVpðr2; tÞl

¼
ð

dQ
ð

dQ0exp½2piðr1Q 2 r2Q0Þ�SðQ;Q0Þ; ð26Þ

Eq. (24) is converted into

½V ðiÞC0� <
m0e

2p"2

ð
dQ

ð
dQ0SðQ;Q0Þ

ð
dr1

�
expð2piKlr 2 r1lÞ

lr 2 r1l
exp½2piðrQ 2 r1Q0Þ�

	

�C0ðK0; r1Þ



; ð27Þ

This potential is non-local function because V ðiÞ cannot be

separated from wave function C0: The most accurate

representation of this non-local imaginary component is to

use its Fourier coefficients given in a matrix form; the ðg;hÞ
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matrix elements are given by

V ðiÞ
gh <

em0

2p2"2Vc

ð
dtðuÞ

Sðkg 2 u;kh 2 uÞ

u2 2 K2
0

(

þi
p

2K0

ð
dsðuÞSðkg 2 u;kh 2 uÞ



; ð28Þ

where Vc is the volume of the crystal; the integral tðuÞ is

over all reciprocal space u except a spherical shell defined

by lul ¼ K0; and the integral sðuÞ is on the surface of the

Ewald sphere defined by lul ¼ K0; with kg < K0 þ g and

kh < K0 þ h: The dynamic form factor S is the most

important function in this calculation. From Eq. (28), the

correction potential V ðiÞ is a complex function, its

imaginary component denotes the ‘absorption’ effect.

Therefore, the potential V introduced in Eq. (20) is the

absorption potential defined by Yoshioka (1957) under the

first order approximation, which represents the effect of

the TDS on the elastic scattered wave. On the other hand,

if the Green’s function takes its real solution rather than

the form in free-space (Eq. (26)), the high order

expressions of this potential contain the high order diffuse

scattering terms dropped under the first order diffuse

scattering approximation. In other words, the higher order

terms of V ðiÞ represents the contribution of the TDS

electron to the image/diffraction pattern. This is the part

that, unfortunately, had been lost in the literature. An

accurate calculation of this potential is given elsewhere

(Wang, 1998c).

In summary, by inclusion of a complex potential in

dynamic calculation, the high order diffuse scattering is

fully recovered in the calculations using the equation

derived under the distorted wave Born approximation, and

more importantly, the statistical time and structure averages

over the distorted crystal lattices are evaluated analytically

prior to numerical calculation. This conclusion establishes

the basis for expanding the applications of the existing

theories. Therefore, the absorption potential has a much

more rich meaning than the conventional interpretation of

an absorption effect.

Theoretical calculation of the absorption potential is a

rather sophisticated process. Band structure calculation is

required for dealing with plasmon excitation, and the

result could be surprising in a way that plasmon scattering

could be more localized than expected (Forsyth et al.,

1997). Calculations of Eq. (29) for TDS and inner shell

ionization have been performed (Allen and Rossouw,

1990). Anisotropic thermal vibration can make appreci-

able contribution to the calculated absorption potential

(Peng, 1997).

8.3. What is missing in conventional image calculation?

Most of the dynamic calculations reported in the

literature are performed with including the Debye–Waller

factor and an imaginary absorption potential following an

equation of

2
"2

2m0

72 2 eV0 2 eV ðiÞ 2 E

 !
C0 ¼ 0: ð29Þ

We would like to know what is missing in this type of

traditional calculation. To illustrate this point one starts

from the Born series solution of Eq. (29), which is

C0ðK0;rÞ ¼C
ð0Þ
0 ðK0;rÞþ e

ð
dr1Gðr;r1Þ½V

ðiÞðr1ÞC0ðK0;r1Þ�

¼C
ð0Þ
0 ðK0;rÞþ e2

ð
dr1{Gðr;r1Þ

ð
dr2½Gðr1;r2Þ

�DVðr1; tÞDVðr2; tÞC0ðK0;r2Þ�}

¼C
ð0Þ
0 ðK0;rÞþ e2

ð
dr1

ð
dr2½Gðr;r1ÞGðr1;r2Þ

�DVðr1; tÞDVðr2; tÞC
ð0Þ
0 ðK0;r2Þ�þ e4

ð
dr1

�
ð

dr2

ð
dr3

ð
dr4½Gðr;r1ÞGðr1;r2ÞGðr2;r3Þ

�Gðr3;r4ÞDVðr1; tÞDVðr2; tÞDVðr3; tÞ

�DVðr4; tÞC
ð0Þ
0 ðK0;r4Þ�þ · · · ð30Þ

In comparison with Eq. (23), the odd power terms of DV are

missing. Therefore, in the classical dynamic calculation

using either the Bloch wave or multislice theory, the

contribution made by the second, fourth and all the even

power order diffuse scattering terms are included, but the

first, third and all the even order diffuse scattering terms are

ignored. Thus, the calculation includes only a small portion

of the diffuse scattering (e.g. the absorption effect from

diffuse scattering), and the calculated results should be

considered as pure-elastic Bragg scattering only.

The approximations made in conventional calculations

are summarized in the following. First, the Green function G

is replaced by its form in free-space G0; which means that

the dynamic elastic diffraction of the electrons is ignored

once they are diffusely scattered (Fig. 7). Second, the optical

potential V ðiÞ is usually approximated as an imaginary

function and the real part is ignored. This might be a good

approximation for TDS, but it may not hold for SRO of

point defects. Third, the first, third and all odd power terms

of the diffuse scattering terms are dropped. Since the diffuse

scattering is mainly distributed at high scattering angles for

TDS, in the low scattering angular range the calculation

accounts only for the purely Bragg reflections although the

Debye–Waller factor is included; in the high angle range,

the calculation accounts only for a small portion of the

diffuse scattering. Finally, it must be pointed out that the

Debye–Waller factor characterizes the weakening of

atomic scattering factor due to the blurring effect of the

atom thermal vibration, but the inclusion of this factor does

not mean that the diffuse scattering is included in the

calculation. This has been misunderstood by many readers.
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9. Summary

With the help of an energy-filter, most of the inelastic

signals can be removed from the image except phonon

scattered electrons. This paper reviews a few studies that we

have carried out in quantifying the contribution made by

TDS electrons in quantitative electron microscopy, in

following topics.

1. The contribution from TDS electrons is especially

important if the image resolution is approaching 0.1 nm

and beyond with the introduction of Cs corrected

microscopes. It is shown that the contribution of the

TDS electrons to the image is of the same order as the

cross interference terms for the Bragg reflected beams in

the dark-field high-resolution TEM imaging. In quanti-

tative HRTEM, the theoretically calculated images

usually give better contrast than the experimentally

observed ones although all of the factors have been

accounted for. This discrepancy is suggested due to TDS.

A more rigorous multislice theory has been developed to

account for this effect (Wang, 1998c).

2. Back to 1993 (Wang, 1993), we proposed theoretically

that the off-axis holography is an ideal energy filter

that even filters away the contribution made by TDS

electrons in the electron wave function, but conven-

tional high-resolution microscopy do contain the

contribution made by phonon scattered electrons. The

only effect of TDS is to introduce an absorption

function in the reconstructed amplitude image due to

the time average, but no effect on the phase image.

This theoretical hypothesis now has been proved

experimentally.

3. In electron scattering, most of the existing dynamical

theories have been developed under the first order

diffuse scattering approximation; thus, they are

restricted to cases where the lattice distortion is

small. A formal dynamical theory is presented for

calculating diffuse scattering with the inclusion of

multiple diffuse scattering (Wang, 1996b). By inclusion

of a complex potential in dynamical calculation, a

rigorous proof is given to show that the high order

diffuse scattering are fully recovered in the calculations

using the equation derived under the distorted wave

Born approximation, and more importantly, the stat-

istical time and structure averages over the distorted

crystal lattices are evaluated analytically prior numeri-

cal calculation. This conclusion establishes the basis

for expanding the applications of the existing theories.

4. The meaning of the absorption potential introduced in

conventional calculation was explored extensively. In

addition to illustrating its role in representing the

absorption effect, emphasis was on its relationship with

high order diffuse scattering. This is a remarkable

advance in electron diffraction theory because it had

been a problem in dealing with the dynamic diffraction

of diffusely scattered electrons from both TDS and

SRO of point defects. The importance of TDS in

quantitative high-resolution TEM was also addressed.

5. The frozen lattice model is a semi-classical approach

for calculating electron diffuse scattering in crystals

arisen from thermal vibration of crystal atoms. This

Fig. 7. Schematic diagrams showing multiple diffuse scattering processes in a crystal (a) with ðGÞ and (b) without ðG0Þ consideration of dynamic diffraction

between consecutive diffuse scattering events. The fan-shape represents the intensity angular distribution due to a diffuse scattering event.
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quasi-elastic scattering approach is, however, con-

cerned since its equivalence with the incoherent

phonon excitation model is not yet established. Based

on a rigorous quantum mechanical phonon excitation

theory, we have proved that an identical result would

be obtained using the frozen lattice model and the

formal phonon excitation model if, (1) the incoherence

between different orders of thermal diffuse scattering is

considered in the frozen lattice model calculation, and

(2) the specimen thickness and the mean-free-path

length for phonon excitation both are smaller than the

distance traveled by the electron within the life-time of

the phonon (,5 mm for 100 kV electrons). Condition

(2) is usually absolutely satisfied and condition (1) can

be precisely accounted for in the calculation with the

introduction of the mixed dynamic form factor SðQ;

Q0Þ: The conclusion holds for each and all of the orders

of diffuse scattering, thus, the quantum mechanical

basis of the frozen lattice model is established,

confirming the validity, reliability and accuracy of

using the frozen lattice model in quantitative dynamical

electron diffraction and imaging calculations.
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