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Multiwalled carbon nanotubes are ballistic conductors

at room temperature
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Abstract. Following the experiments of Frank et al. [1],
which demonstrated quantum transport in multiwalled carbon
nanotubes, there have been several experiments that appear
to contradict the main conclusion of that paper, which is that
the transport of a MWNT at room temperature is ballistic.
Here we demonstrate that the intrinsic resistance of clean-
arc-produced carbon nanotubes is at most 200 €2/um, which
implies that the momentum mean free path is greater than
30 wm, which in turn is much larger than the tube length. This
implies that these tubes are ballistic, according to the standard
definition of ballistic transport. We also show that the contact
resistance with mercury is quite large: a nanotube in contact
with Hg over 100 nm of its length still represents a 3000 €2
resistance.

PACS: 73.22.-f;72.15.Lh; 73.63.Fg

Transport in carbon nanotubes is both fascinating and con-
troversial. Nanotubes have been shown to be (depending on
the conditions and environment) both ballistic [1] and dif-
fusive [2—5], and SWNTs appear to be p-doped due to the
contact [6] or from atmospheric gasses [7, 8]. They are either
metallic or semiconducting depending on the helicity [9].
Frank et al. [1] demonstrated several important transport
properties in arc-produced MWNTs in a very simple ex-
periment that involved contacting the nanotubes by dipping
them into a liquid metal [1, 10]. The tubes protruded from
a nanotube fiber, which was recuperated from nanotube arc
deposits [11]. The tubes were not processed in any way in
order to avoid contamination or damage. The conductance
of the nanotubes was measured as a function of the depth
L into the liquid metal. The resistance of these tubes was
found to demonstrate flat quantized conductance plateaus (i.e.
sample-length-independent resistance) and the tubes could
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sustain very large currents [1]. The independence of the con-
ductance values on the tube diameter (which were close to
Gy; values near 1/2G( were also observed), the flatness of
the plateaus and the very large currents (up to 1 mA through
a tube) led Frank et al. to conclude that the transport was
confined to the outer layer of the tube and that the trans-
port was ballistic [1]. It appeared that the conductance of
the outer layer was Gy rather than 2Gy, as expected on the-
oretical grounds [9, 12]. At the time of publication, it was
known that nanotubes were conductors (from numerous ex-
periments), however ballistic transport had not been observed
under any conditions.

Subsequent experiments confirmed that only the surface
of MWNTs transport the current and that very high cur-
rent densities can be applied [2, 13]. Aharonov Bohm experi-
ments [13] showed that at most only the outer two layers
conduct. Furthermore, high currents will destroy the outer
layers only. Since only one in three layers is expected to be
metallic, it is expected statistically that only a few layers at
the top can participate in the transport. Our present experi-
ments strongly suggest that only the outer layer participates,
with only the expected conductance value. However, the key
result, that the transport is ballistic was contradicted in at least
two experiments [2, 3]. In the experiments by Schonenberger
et al. [2], it was found that the resistance per unit length of
MWNTs is of the order of 5kQ2/wm while the experiments
of Bachtold et al. show even higher values (of the order of
10 k2/pm) [3].

Very recently, Tinkham’s group conclusively demon-
strated that SWNTSs are ballistic conductors by showing the
quantum interference effect in the current between two elec-
trodes [13]. The fact that SWNTs are ballistic and MWNTs
are not is counter to general arguments which all tend to fa-
vor the MWNTs to have longer mean free paths [2, 15]. Here,
we focus on direct measurements of o, the resistance per unit
length of MWNTSs which can be converted to the momentum
mean free paths. We concentrate on the shape of the conduc-
tance steps. It is important to realize that the mean free path
is the critical parameter that determines the ballistic aspects
of the conductance [16] and not the total resistance of the
system, which also includes spurious contact resistances, as
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shown below. (Note that in the standard definition, ballistic
conduction occurs if the momentum mean free path is longer
than the length of the conductor [16].)

We have found in our investigations that some arc deposits
are much richer in nanotubes presenting quantized plateaus
(Go steps) than other deposits made in the same appara-
tus [17]. We believe that the discrepancies are due to the
amounts of graphitic debris, which in turn determines the
contact of the nanotube with the fiber. However, we never ob-
served step heights substantially greater than G,. Moreover,
the plateaus were very flat in all cases (independent of the
plateau values).

Here we demonstrate from detailed analysis of the con-
ductance plateaus that the resistances per unit length are less
than 200 €2/m.

A conductance plateau [1] is shown in Fig. 1a, which
shows the conductance of a nanotube as a function of L,
which is the depth that the nanotube is submerged in the Hg.
This is a typical example, and one of a series of 60 meas-
urements of this plateau, which are quite reproducible. The
structure shows a jump just after contact followed by a convex
rounding, followed by an extended flat plateau. For a classical
diffusive system the step would be modeled as:

Rube = (Lo — L)0 = Gupe (1)

where Ly is the length of the tube and o is the resistance/
length. Figure 1c shows R(L) for a step and what is predicted
from (1) using the values of ¢ from Shonenberger [2]and from
Bachtold [3]. It is clear that o for this step is much lower; in
fact, the slope at the end of this plateau is 0.18 k2 /pm. It is
clear that (1) describes the step very poorly. A much better
fit is obtained by taking the metal-nanotube contact into ac-
count. The metal-nanotube contact conductance is modeled
as:

Gcon = (Glip + VL) (2)

where Gy, represents the tip conductance which causes the
jump in the conductance just after the contact is established.
Hence, the total conductance is:

G_l = Gcon_1 + Gtube_1 + Gﬂal_1 (3)

where Gqy, includes remaining L-independent contributions
like the nanotube-fiber contact, or the ballistic contribution
(see below).

From Fig. 1a and b it is very clear that the rounded shape
of the step is indeed due to G, Which produces the con-
vex shape. From a full analysis of the shapes for this step we
find that 0 = —36450 /um, and y = (200 2 um)~'. These
are typical values. However, in order to be as conservative
as possible we will ignore the contribution due to the con-
tact (which clearly dominates, as evidenced by the curvature
amply demonstrated above), and hence take the resistivity to
be o < 200 2/um. Nevertheless, this upper bound for o is as
much as two orders of magnitude lower than that found by
Schonenberger and Bachtold.

The mean free path is found from these resistances
from the Einstein relation [18]. From the Fermi velocity
(8 x 107 cm/s) [14] and the theoretical density of states, we
derive that the momentum mean free path:

Am = 30 pm

Note that it can be shown [17] that the mean free path is re-
lated to o by
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Fig. 1. Typical conductance step showing the conductance of a nanotube as
a function of the distance L as it is lowered into the liquid Hg drop (L =0
corresponds to the position of the conductance jump). a The conductance
rises, at first abruptly, followed by a gradual increase that asymptotically
approaches the plateau value Gp. Insert, The shape is well approxi-
mated by the semi—classical resistance equation G(L) = {Gpl_' + (Gip+
yL)~'}~1, as shown in b, which clearly demonstrates the linear depen-
dence of (1/G(L)— 1/Gp|)_' on L. ¢ The resistance R(L) = G(L)~! of
the same step. The obvious non-linear dependence on L indicates that the
rounding is primarily due to y and not to o. Hence the extrapolated line
with 0 =0.18 k€2/pum is an upper limit to the intrinsic resistance per unit
length p; the lines with o =4 k2/pum and o = 10 k2/pum correspond to the
intrinsic resistance per unit length reported in [2, 3] respectively



where 7 is the number of conducting channels (i.e. 2), which
gives the same result as above. It is hence clear that nanotubes
of micron lengths are ballistic conductors at room tempera-
ture. Even if as many as 10 layers were involved in the trans-
port (so that n = 20), then the mean free path is still larger
than 1 wm and the tube would still be ballistic on the micron
length scale. We emphasize that this is really the worst pos-
sible case: all layers contribute to the transport (in contrast to
several experimental findings) and the resistivity is over esti-
mated (that is, the contact contribution the length-dependent
resistivity is ignored: all the dependence is ascribed to the in-
trinsic nanotube resistivity). Hence, on the basis of this analy-
sis, these free-standing clean nanotubes are indeed ballistic
conductors at room temperature.

From the above analysis it is also clear that very large con-
tact between the nanotube and the metal is required in order
to ensure high transmission coefficients (i.e. low contact re-
sistances). From Fig. 1b, a nanotube in contact with Hg over
100 nm of its length still represents a 3000 €2 resistance. This
effect will be important if nanotubes are incorporated into
electronic circuits.

We point out that similar relations as those above can
be derived in the Landauer formalism [16], where the series
resistance is replaced by sequences of scatterers with their
related transmission and reflection coefficients [16,17]. The
conclusions remain the same from this analysis as those from
the analysis above, however an additional term in the conduc-
tance (1) appears, which relates to the ballistic conductance of
the system.

The nanotube—fiber contact is not well characterized and
consists of a nanotube which makes contacts with a com-
pact bundle of packed nanotubes. This complex system can
be modeled. If we assume that each contact of the nano-
tube with a tube in the fiber is very good, which means that
electrons at each nanotube—nanotube contact are transmit-
ted (and reflected) into all the possible available channels
with equal probabilities, then the total transmission coeffi-
cient of this contact is found [17] to be at most 0.6. Hence it
is quite likely that the ‘missing’ conductance channel is due
to the reflections at the nanotube—fiber contact. This also ex-
plains the observed variations in the plateau values and that
the maximum observed plateau value is slightly greater than
Gy. Lower plateau values (with otherwise flat plateaus) are
due to poorer contacts with the fiber. Significantly sloping
plateaus are only found when the nanotubes are visibly con-
taminated with graphitic debris, as observed in in situ electron
microscopy experiments [17].
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The discrepancy of our measurements with those of Scho-
nenberger [2] and Bachtold [3] still needs to be explained.
It should first of all be pointed out that our measurements
directly address the variation of the resistance as a func-
tion of the length of the nanotube, and hence can directly
be related to mean free paths without the use of arguments
involving temperature dependencies and magnetic field de-
pendencies. This difference in approach could point to an
explanation of the discrepancies. However, we believe that
the fundamental difference is in the processing of the nano-
tubes [19]. For example, surfactants were used to purify the
nanotubes [19,20] and if the surfactant is subsequently not re-
moved (by extreme temperatures in vacuum or by burning off
in air [21]) then this coating is very likely to profoundly af-
fect the transport by causing significant scattering, since it is
now known that adsorbed molecules on the surfaces affect the
resistance [7, 8, 17].
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