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Collective oscillations in a single-wall carbon nanotube excited by fast electrons
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Electron energy loss spectroscopy is a well adapted tool for the investigation of the valence excitations of
individual nanometer-size particles. The interpretation of the loss spectra of such small particles, however,
relies in most cases on a quantitative comparison with simulated excitation probabilities. Here we present a
formalism developed for the interpretation of the energy loss data of single-wall carbon nanotubes based on the
hydrodynamic theory of plasmon excitations by high-energy electrons. The nanotubes are modeled as a two-
dimensional electron gas confined on the circumference of a cylinder. The plasmon excitation probabilities,
directly comparable to measurements, are discussed for various parameters.
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I. INTRODUCTION

One of the most fascinating aspects about single-wall
bon nanotubes1 is that their electronic properties criticall
depend on their geometry. Experimentally, such theoret
predictions2–4 have proven difficult to validate since even th
most recent production methods5–8 yield a mixture of tubes
of different helicities and diameters. Purification methods9–14

have been proposed but a separation of the tubes acco
to helicity and radius is not yet possible. One way to ov
come these experimental problems consists in the inves
tion of the properties of individual particles. This requir
local probe techniques capable of imaging a nanotube w
atomic resolution and of measuring at the same time
physical properties. Scanning tunneling microscopy~STM!,
for instance, fulfills these conditions and has proven usefu
the study of carbon nanotubes. Important information ab
the electronic structure and its dependence on the geom
of the nanotube has thus been obtained.15–20 Another local
probe technique, atomic force microscopy~AFM! has also
proven useful in the study of carbon nanotubes. The ab
of this technique to apply a force on nanometer-size parti
has been used to determine the mechanical properties of
ous types of carbon nanotubes.21,22

Despite these recent advances in the characterizatio
carbon nanotubes, there is still a need for additional inform
tion. An alternative local probe technique such as elect
energy loss spectroscopy~EELS! in a high-resolution trans
mission electron microscope~HRTEM! might therefore
prove useful. Quantitative information can for instance
obtained on the high-energy collective excitations of the
lence electrons. The interpretation scheme of the valence
spectra usually involves a comparison of the experime
data with simulated excitation probabilities. A number of th
oretical studies treat the plasmon excitations of single-w
carbon nanotubes.23–33 Most authors, however, exclusivel
treat the plasmon dispersion relation.23–28 Plasmon excita-
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tion probabilities have only been calculated by Linet al.30,31

and Vasva´ri. 32 In their approaches it is assumed that t
excitation is induced by a homogeneous electric field. Thi
true for optical measurements, but does not hold for el
trons. In the case of nested concentric-shell fullerenes it
for instance been shown that the plasmon excitation pr
ability depends on the position of the electron probe on
particle.35 This dependence on the impact parameter can
be reproduced when one assumes that the plasmons ar
cited by a homogeneous time-dependent electric field. In
contribution we propose a model for the interpretation
EELS data of the plasmons of individual single-wall carb
nanotubes. Our approach basically is an extension of the
drodynamic formalism of the collective excitations of th
valence electrons in carbon nanotubes proposed by Y
nouleaset al.26,28or Jianget al.24 The extension consists in
high-energy TEM electron that passes through or close
the carbon nanotube. The Coulomb interaction between
two systems has been included and the plasmon excita
probability has been derived for this transmission geome
The expression of the excitation probability has been eva
ated with typical experimental parameters for nanotubes
different radii. Our results can directly be compared to e
ergy filtered TEM images or EEL spectra of individu
single-wall carbon nanotubes and therefore should repre
a useful basis for the interpretation of such measuremen

II. HYDRODYNAMIC FORMALISM

A. General considerations

For the simulations of the plasmon-loss spectra of sing
wall carbon nanotubes two problems must be solved. F
the electronic properties of a tube have to be modeled.
assume that a single-wall nanotube consists of quasifree e
trons confined onto a cylindrical shell of radiusa and of
infinite length~Fig. 1!.34 The electronic properties of the tub
©2001 The American Physical Society24-1
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are determined by the dynamics of the electron gas~Sec.
II B !. Second, the interaction of the TEM probe electro
with the nanotube needs to be taken into account. We s
pose independent scattering events, treat the electron cl
cally, and neglect relativistic effects. Furthermore we assu
that the electron moves at constant velocityv on a straight
line ~Fig. 1!. These approximations are identical with tho
made in nonrelativistic local dielectric response theory of
plasmon excitations of nanometer-size particles~for a re-
view, see Ref. 36! and have proven to be valid in variou
comparative studies between experimental data and sim
tions. The advantage of this approach is that the poten
distribution induced by the TEM probe electron pass
through or close by a single-wall carbon nanotube can
calculated explicitly~Sec. II C!. The energy loss of the prob
electronDE can then be deduced from the potential dis
bution by integration of the elementary work done to t
electron by the induced electric field~polarization of the
nanotube!

DE5E
trajectory

F~x,t !•dx5E
trajectory

~2e!E~x,t !•dx. ~1!

In the last step of the calculation~Sec. II D! the plasmon
excitation probability is deduced from the expression of
energy loss@Eq. ~1!# by elimination ofDE using the relation

DE5E
0

`

\v
dP~v!

dv
dv. ~2!

B. Dynamics of the electron gas

We assume that a single-wall carbon nanotube has a
lindrical shell structure whose thickness is negligible in co
parison to its diameter. Therefore, the valence electrons
considered to distribute on a cylindrical surfaceSdefined by
a delta function in cylindrical coordinates. In consequen
the motion of the conduction electrons is also confined
this cylindrical shell. The dynamics of the two-dimension
~2D! electron gas and the effect of the incoming probe el
tron are treated using the linearized hydrodynamic equat
of Bloch @Eqs.~3a!–~3c!#:36–41

FIG. 1. Geometric parameters of the problem: The probe e
tron, located atr0(t), is traveling parallel to they axis at a given
impact parameterx0 in negativey direction. Its position is charac
terized in cylindrical coordinates with the radiusr0(t) and the angle
w0(t).
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]

]t
C~r ,t !1gC~r ,t !52

e

me
V~r ,t !1

b2

n0
n~r ,t !urPS ,

~3a!

¹2C~r ,t !5
1

n0

]

]t
n~r ,t !urPS , ~3b!

¹2V~r ,t !5
e

e0
$n~r ,t !1d@r2r0~ t !#%. ~3c!

¹C(r ,t) andn(r ,t) are the perturbations of the velocity po
tential and the charge density of the two-dimensional el
tron gas, respectively.V(r ,t) represents the electric potenti
resulting from the electrons on the cylinder and from t
probe electron. The constantse, me , andn0 are the elemen-
tary charge, the effective electron mass, and the numbe
electrons participating in the excitation per unit area, resp
tively. Equation~3a! is the integral form of Newton’s equa
tion of motion. Damping needs to be included in order
make the system nonconservative. If this is omitted, the e
tron does not lose any energy when passing by or through
particle. Damping is contained in the phenomenological fr
tion term, proportional to the velocity potential. The consta
of proportionality, the damping coefficientg, is the inverse
of the characteristic collision time. As in the Drude model
metals,g represents the full width at half maximum of th
plasmon resonance peak. The term linear in the electron
sity can be regarded as diffusion potential of the electronsb
is the root mean square propagation speed of the den
disturbance through the electron gas. In the case of a
dimensional electron gasb2 is related to the Fermi velocity
via the relationb251/2vF

2 .42 Equation~3b! is the continuity
equation for the 2D confined conduction electrons of
cylinder. Since the electrons are confined on a cylindri
surface, Newton’s equation of motion@Eq. ~3a!# and the con-
tinuity equation@Eq. ~3b!# must be evaluated on the surfaceS
of the cylinder. Finally, Eq.~3c! is the Poisson equation an
has to be solved in all space.d@r2r0(t)# represents the
probe electron located at positionr0(t).

C. Solution of the Bloch equations for the nanotube geometry

The solution of the Bloch equations@Eqs. ~3a!–~3c!# is
straightforward, once the problem is put correctly. In a fi
step it can be realized that the substitution of Eq.~3b! in the
Laplacian of Eq.~3a! allows one to eliminatec(r ,t), so that
the original set of equations simplifies to

1

n0
S ]2

]t2
1g

]

]t D n~r ,t !52
e

me
¹2V~r ,t !1

b2

n0
¹2n~r ,t !urPS ,

~4a!

¹2V~r ,t !5
e

e0
$n~r ,t !1d@r2r0~ t !#%. ~4b!

The appropriate boundary conditions for these equati
for the nanotube geometry are~a! the vanishing of the nor-
mal component of the velocity perturbation at the surface
the cylinder,~b! the vanishing of the potential asr→`, and

c-
4-2
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~c! the finiteness of the electric potential at the origin. Co
dition ~a! is automatically satisfied, since we assume
electrons to be confined on the cylindrical shell. Conditio
~b! and ~c! will allow the expansion of the potential and th
charge density disturbance in Fourier-Bessel series. The
lindrical shell ~nanotube! separates space into two region
the inside and outside of the nanotube. For the determina
of the electric potential it is useful to treat these regio
separately. For this purpose, Eq.~4b! is replaced by two
equations, which yield the electric potentialVr.a(r ,t) out-
side andVr,a(r ,t) inside the tube separately. Both have
satisfy the same differential equation, namely,

¹2Vr.a~r ,t !

¹2Vr,a~r ,t !J 5
e

e0
d@r2r0~ t !#. ~5!

Vr.a(r ,t) and Vr,a(r ,t) are related to each other by add
tional boundary conditions which will be discussed below.
this point it has to be realized that the response of the
electron gas is frequency dependent. For this reason
imperative that the equations and the boundary conditi
are written in frequency space. Using the convention that
Fourier transform of a functionA(r ,t) from time into fre-
quency space is given by

Ã~r ,v!5E
2`

`

eivtA~r ,t !dt ~6a!

and the inverse Fourier transform from frequency into ti
space is given by

A~r ,t !5
1

2pE2`

`

e2 ivtÃ~r ,v!dv ~6b!

Equations~4a!, ~4b!, and~5! become

2v~v1 ig!
ñ~r ,v!

n0
52

e

me
¹2Ṽ~r ,v!1b2¹2

ñ~r ,v!

n0
U

rPS

,

~7a!

¹2Ṽr.a~r ,v!5
e

ve0
d~x2x0!d~z!eivy/v, ~7b!

and

¹2Ṽr,a~r ,v!5
e

ve0
d~x2x0!d~z!eivy/v, ~7c!

respectively. Now, the boundary conditions relati
Vr.a(r ,v) to Vr,a(r ,v) in frequency space can be intro
duced. They are~d! the continuity of the electric potential

Ṽr.a~r ,v!ur→a5Ṽr,a~r ,v!ur→a ~8a!

and~e! the relation obtained by integration of the inhomog
neous Maxwell equation relating the displacement field
the charge density

]

]r
Ṽr.a~r ,v!ur→a2

]

]r
Ṽr,a~r ,v!ur→a5

e

e0
ñ~r ,v!ur→a .

~8b!
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Equations~7a!–~7c! with the boundary conditions Eqs.~8a!
and~8b! represent the problem of the plasmon excitations
a single-wall carbon nanotube. The solutions of the inhom
geneous differential equations~7b! and~7c! are composed of
a homogeneous and an inhomogeneous term each. Inde
the homogeneous solution ind~for induced potential! and the
inhomogeneous solutionp ~for particular solution!, the solu-
tions of Eqs.~7a! and ~7c! read

Ṽr.a~r ,v!5Ṽr.a
p ~r ,v!1Ṽr.a

ind ~r ,v! ~9a!

and

Ṽr,a~r ,v!5Ṽr,a
p ~r ,v!1Ṽr,a

ind ~r ,v!, ~9b!

respectively. The inhomogeneous term representing the
rect potential of the probe electron is the same for both eq
tions. In cylindrical coordinates it is given in terms of
Fourier-Bessel expansion43,44

Ṽr,a
p ~r ,v!5Ṽr.a

p ~r ,v!

5E
2`

`

dteivtS 1

4pe0

2e

ur2r0~ t !u D
5

2e

2pe0
(

m>0
~22d0,m!E

2`

` dq

2p
eiqzE

2`

`

dt eivt

3cos$m@w2w0~ t !#%Lm@ uqur,uqur0~ t !#,

~10!

where

Lm@ uqur,uqur0~ t !#5Km~ uqur!I m@ uqur0~ t !#u@r2r0~ t !#

1Km@ uqur0~ t !#I m~ uqur!u@r0~ t !2r#.

~11!

The functionu(x) in Eq. ~11! is the Heaviside step function
given by

u~x!5H 1 for x.0,

0 for x,0.
~12!

The homogeneous solutions of Eqs.~7b! and ~7c! repre-
sent the induced potential due to the charge distribution
the cylindrical shell generated by the probe electron. Yet
determined, they are expanded into Fourier-Bessel se
with coefficients Am(q,v), Bm(q,v), Cm(q,v), and
Dm(q,v):

Ṽr,a
ind ~r ,v!5

2e

2pe0
(

m>0
~22d0,m!

3E
2`

` dq

2p
@cos~mw!Am~q,v!

1 sin~mw!Bm~q,v!#eiqzKm~ uqua!I m~ uqur!,

~13a!
4-3
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Ṽr.a
ind ~r ,v!5

2e

2pe0
(

m>0
~22d0,m!

3E
2`

` dq

2p
@cos~mw!Cm~q,v!

1 sin~mw!Dm~q,v!#eiqzKm~ uqur!I m~ uqua!.

~13b!

The unknown series coefficientsAm(q,v), Bm(q,v),
Cm(q,v), andDm(q,v) are going to be determined by th
boundary conditions Eqs.~8a! and ~8b!.

In order to find the solution of Eq.~7a! the charge density
fluctuation is also written in terms of a Fourier-Bessel ser
with unknown coefficientsEm(q,v) and Fm(q,v) which
will be determined by substitution in Eq.~7a!.

ñ~r ,v!5
2e

2pe0
(

m>0
~22d0,m!d~r2a!

3E
2`

` dq

2p
@cos~mw!Em~q,v!

1 sin~mw!Fm~q,v!#eiqzKm~ uqua!I m~ uqua!

~14!

The differential Eqs.~7a!–~7c! are now solved. Substitution
of Ṽr.a(r ,v), Ṽr,a(r ,v), andñ(r ,v) in the boundary con-
ditions @Eqs. ~8a! and ~8b!# and in Eq.~7a! yields a set of
three linear equations for the six coefficients. Matching
linearly independent sine and cosine terms in each equa
one obtains a set of six equations for six unknowns. T
coefficients can thus be determined straightforwardly.

From the continuity of the electric potential@Eq. ~8a!# it is
immediate that

Am~q,v!5Cm~q,v! ~15a!

and

Bm~q,v!5Dm~q,v!. ~15b!

Using the identity45,46

I m8 ~x!Km~x!2I m~x!Km8 ~x!5
1

x
, ~16!

the boundary condition Eq.~8b! leads to the relations

Am~q,v!
1

a
52

e

e0
Em~q,v!I m~ uqua!Km~ uqua! ~17a!

and

Bm~q,v!
1

a
52

e

e0
Fm~q,v!I m~ uqua!Km~ uqua!. ~17b!

The substitution of the expression of the potential@Eqs.~9a!
and ~9b!# and the charge density fluctuation@Eqs.~14!# into
the equation of motion@Eq. ~7a!# yields
11542
s
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F2v~v1 ig!1b2S m2

a2
1q2D GEm~q,v!

5
en0

me
S m2

a2
1q2D @CIm~q,v!1Am~q,v!#

~18a!

and

F2v~v1 ig!1b2S m2

a2
1q2D GFm~q,v!

5
en0

me
S m2

a2
1q2D @SIm~q,v!1Bm~q,v!#,

~18b!

where we have introduced the functions CIm(q,v) and
SIm(q,v) defined by

CIm~q,v!52E
uyu/v

`

dt cos~vt !cos@mw0~ t !#
Km@ uqur0~ t !#

Km~ uqua!

12E
0

uyu/v
dt cos~vt !cos@mw0~ t !#

I m@ uqur0~ t !#

I m~ uqua!

~19a!

and

SIm~q,v!52i E
uyu/v

`

dt sin~vt !sin@mw0~ t !#
Km@ uqur0~ t !#

Km~ uqua!

12i E
0

uyu/v
dt sin~vt !sin@mw0~ t !#

I m@ uqur0~ t !#

I m~ uqua!
.

~19b!

Equations~17a!–~18b! form a set of four linear equation
for the four remaining coefficients. The solution of the sy
tem gives

Em~q,v!5
21

aKm~ uqua!I m~ uqua!

e0

e
xm~q,v!CIm~q,v!,

~20a!

Fm~q,v!5
21

aKm~ uqua!I m~ uqua!

e0

e
xm~q,v!SIm~q,v!,

~20b!

Cm~q,v!5Am~q,v!5xm~q,v!CIm~q,v!, ~20c!

and

Dm~q,v!5Bm~q,v!5xm~q,v!SIm~q,v!, ~20d!

wherexm(q,v) is the function
4-4
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xm~q,v!5

Vp
2S m2

a2
1q2D aKm~ uqua!I m~ uqua!

v~v1 ig!2b2S m2

a2
1q2D 2Vp

2aKm~ uqua!I m~ uqua!S m2

a2
1q2D . ~21!
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Vp is given byVp5Ae2n0 /e0me, wheren0 is the surface
electron density of the graphitic shell. Assuming that t
layer has a finite thicknessd, Vp can be related to the bul
electron density of graphite by the relation

Vp
25vp

2d, ~22!

where vp is the plasmon resonance frequency of pla
graphite, which is related to the bulk charge densityN0 in the
usual way:

vp5Ae2N0 /e0me. ~23!

Note that when the denominator ofxm(q,v) is put equal
to zero, the plasmon dispersion relation is obtained. If
damping coefficientg and the pressure termb are put equal
to zero our result is identical to the particular case of a o
layer tube of the dispersion relation obtained by Yannoul
et al.26,28

D. Energy loss of a probe electron

Knowing the electric potential, it is possible now to ca
culate the energy loss of an electron passing through or c
by the single-wall nanotube. For this purpose the Fou
transform of the electric fieldE(x,v)52¹V(x,v) is in-
serted into Eq.~1!. Since no volume plasmon can develop
the two-dimensional shell, only the induced potential~sur-
face losses! needs to be considered.

DE5
e

2pE2`

`

dyE
2`

`

dve2 ivy/vS ]

]y
Ṽind~r ,v! D U

r5(x0 ,y,0)

.

~24!

The induced potentialṼind(r ,v) is the homogeneous part o
the solution of Eq.~7a!.

Ṽind~r ,v!5H Ṽr,a
ind ~r ,v! for r,a,

Ṽr.a
ind ~r ,v! for r.a.

~25!

Since the integration needs to be done on a straight line
useful to reintroduce Cartesian coordinates.r0(t), param-
etrized byr0(t), w0(t), andz0, can be expressed in terms
the parameters of the trajectory of the electron~Fig. 1!:

r0~ t !5Ax0
21~vt !2, ~26a!

w0~ t !5arccosS x0

r0~ t ! D . ~26b!
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Due to symmetryz0 is assumed to be zero. In the same w
the space variabler with the cylindrical coordinatesr, w,
andz, can be expressed in terms of the Cartesian coordin
x, y, andz:

r5Ax21y2, ~27a!

w5arccosS x

r D . ~27b!

Once the potential substituted in Eq.~24!, the excitation
probability can be found by elimination ofDE using Eq.~2!.
This implies that thev integral in expression~24! from mi-
nus to plus infinity is transformed to an integral from zero
infinity. This is possible since the response of the system
causal. After the necessary transformations the plasmon
citation probability of a single-wall carbon nanotube b
comes

dP~v!

dv
5

e2

p3\ve0
(

m>0
~22d0,m!E

0

qc
dqFIm@xm~q,v!#

3XI m~qa!E
y0

`

dyH Fcos~mw!cosS vy

v DCIm~q,v!

1 sin~mw!sinS vy

v D Im@SIm~q,v!#GKm~qr!J
1Km~qa!E

0

y0
dyH Fcos~mw!cosS vy

v DCIm~q,v!

1 sin~mw!sinS vy

v D Im@SIm~q,v!#G I m~qr!J CG.
~28!

If the probe electron passes through the nanotube the
tegration boundaryy0 is given byy05Aa22x0

2 which is half
the distance the electron travels inside the tube. If the e
tron passes outside the tubey0 is equal to zero. Note that th
upper boundary of the integral overq has been put equal to
qc , the critical wave vector.47 Above this critical wave vec-
tor plasmon excitations can transfer their energy to a sin
electron and are thus heavily damped~Landau damping!.

III. SIMULATED PLASMON EXCITATION
PROBABILITIES

A. Technical details

All simulations have been done with theMATHEMATICA

software package by Wolfram Research Inc. In order to
4-5
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FIG. 2. 3D plot of the imaginary part of the
function xm(q,v) for the acoustic (m50) and
the fist optical mode (m51). The maximum of
the function indicated by the solid line on the to
of each plot determines the resonance frequen
In ~a! and ~b! the function is plotted for a tube
radius of 0.6 nm as a function of the wave vect
transfer ~dispersion relation!. In ~c! and ~d!
xm(q,v) is plotted against the nanotube radiu
for a fixed wave vector transfer of 0.1 nm21.
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duce computation times, we have taken advantage of
possibility to call C or FORTRAN code from within
MATHEMATICA . 48 In particular, all Bessel functions hav
been evaluated using theFORTRAN NAG library code. Special
care has been taken when evaluating the Bessel function
large or small arguments. A rearrangement of the terms
Eq. ~28! allows one to collectI- andK-type Bessel functions
in a way that their diverging behavior is compensated~for
more details, see Ref. 49!.

B. Parameters for the simulations

The excitation probabilities shown in this text have be
calculated for TEM probe electrons passing at an impact
rameterx050 ~Fig. 1! for typical experimental conditions
The energy of the incident electrons was assumed to be
keV. The diameter of single-wall carbon nanotubes as p
duced by common methods~arc discharge, laser ablation! is
between 1 and 1.5 nm. The simulations have thus been
ried out for tubes with 0.5, 0.6, and 0.7 nm radius. Since
mean scattering angle for a probe electron exciting a p
mon is small, we suppose that all scattered electrons
detected by the spectrometer. Experimentally this is reali
if no angle limiting apertures are inserted into the colum
The maximum scattering angle in this configuration is de
mined by the plasmon cutoff wave vector. Most simulatio
have been carried out with a cutoff wave vector of 10 nm21.
This corresponds to a scattering angle of 6 mrad for 100 k
electrons which is of the order of those for the volume pl
mon of metals found in the literature.47,50 Since the exact
value of the cutoff wave vector is not known for single-wa
carbon nanotubes simulations have also been carried ou
1 nm21 ~0.6 mrad at 100 keV!.

The parameters independent of the experimental co
tions ~intrinsic to nanotube! are the electron densityn0, the
effective electron massme , the damping coefficientg, and
the Fermi velocityvF ~pressure termb). They all appear
solely in the expression of the functionxm(q,v) @Eq. ~21!#.
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It has been shown in Sec. II C that the electron density
the effective mass always appear together and can be
lected to form one single parameterVp depending on the
resonance energyvp of the bulk plasmon and ond, the thick-
ness of the graphitic shell~0.34 nm!

Vp
25dvp

25dS e2N0

e0me
D . ~29!

We have restricted the simulations to the excitation of
s1p electrons.51 The simulations have been carried o
with two different values forvp of thes1p electrons: 27.5
and 21.5 eV. The first is the experimentally determined va
of the resonance energy of the bulk graphites1p electron
plasmon52–54and the second is obtained from estimated v
ues of the electron density and the effective mass.26,28 Note
that in order to avoid confusion with the plasmon resona
energy of the single-wall tube we callvp the resonance pa
rameter. The damping coefficientg determines the width of
the resonance peak. In planar graphite, the full width at h
maximum of thes1p electron plasmon resonance is 5 eV55

Inspired by this experimental value we have carried
simulations with damping coefficients of 2, 5, and 10 eV. F
the Fermi velocity we have taken the value for bulk graph
vF58.1103105 ms21 given by Wallace.56 It turns out that
the pressure term is in all circumstances small. In con
quence a better estimate of this parameter is not crucial.

C. Dispersion relation

As has been pointed out, the theoretical aspects of
plasmons of single-wall carbon nanotubes have been stu
by several authors.23–28It has been established that the spe
trum of a single-wall carbon nanotube is composed of a
ries of contributions which are due to the polar and multip
lar oscillation modes characteristic of the cylindric
geometry. Figure 2 shows the imaginary part of the funct
4-6
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xm(q,v) for the first two oscillation modes (m50 andm
51). For a fixed tube radius (a50.6 nm! the maximum of
the function, indicated by the solid line on the top of ea
plot, as a function of the wave vectorq represents the dis
persion relation@Figs. 2~a! and 2~b!#. An acoustic dispersion
behavior57 can be observed for them50 mode@Fig. 2~a!#
while all higher order modes show the characteristics of
tical dispersion@Fig. 2~b!#. Figures 2~c! and 2~d! show the
dependence of the imaginary part of the functionxm(q,v)
for a fixed wave vector transfer of 0.1 nm21 plotted against
the nanotube radius. It can be observed that the reson
energy strongly depends on the nanotube radius. Moreo
this dependence is clearly different for the acoustic@Fig.
2~c!# and for the optical modes@Fig. 2~d!#.

With regard to the information accessible by EELS in
HRTEM, Fig. 2 elicits two questions. First, one would like
know which of the modes will give the most important co
tribution to the spectrum and second, at what energy
plasmon resonance can be observed when all scatte
angles are collected. In Sec. III D we discuss the plasm
excitation probabilities for TEM electrons passing throu
the center of a single-wall nanotube~impact parameterx0
50) calculated with the results of Sec. II. We will show th
the simulated data gives the answer to the two quest
mentioned above.

D. Excitation probabilities

Figure 3 shows the excitation probabilities obtained w
a resonance parameter of 27.5 eV, a damping coefficient
eV and a critical wave vector of 10 nm21 for three different
tube radii~0.5, 0.6, and 0.7 nm!. The different contributions
of the first seven oscillation modes and the total excitat
probability ~solid line! for each tube radius are shown. Th
acoustic mode (m50) causes an increase of the excitati
probability towards the low energy losses. The first opti
(m51) mode determines the onset of the plasmon resona
peak. It can be seen in Fig. 3 that the position of the ma
mum of the excitation probability depends on the tube
dius. The plasmon resonance energy of smaller tube
higher than that of larger tubes. The modes superior tom
51 are responsible for a fine structure in the high-ene
flank of the plasmon resonance. The intensity of each con
bution decreases as the mode number increases. The e
interval between successive contributions depends on
resonance mode and the tube radius. In larger nanotubes
oscillation modes are closer together than in smaller o
~Fig. 3!. For a given radius the spacing between two succ
sive modes becomes smaller as the mode number is
creased.

The cutoff wave vectorqc determines at what rate th
intensity of the higher order modes decreases. Figur
shows this dependence for a single-wall tube of 0.6 nm
dius for two values ofqc ~1 and 10 nm21). The curves have
been simulated with a resonance parameter of 27.5 eV a
damping coefficient of 5 eV. It can be observed that for
smaller cutoff wave vectors the first oscillation mode yie
the most important contribution and the maximum of t
excitation probability is at 14.5 eV. However, for larger va
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ues the higher order oscillations become more importan
compared to the first order mode. This tendency could
come even more pronounced if the restriction of infinite
long nanotubes is omitted. When nanotubes of finite len
are considered the wave vector transfer is not only limited
the critical wave vector, but also by the length of the nan
tube 1/l<q<qc .36 With regard to the tendency observed
Fig. 4 one can expect the contribution of the higher ord
modes to be enhanced as compared to the lower o
modes. In this case it is possible that the maximum of
plasmon excitation probability is at 20.5 eV, the position
the second order oscillation mode.

FIG. 3. Plasmon excitation probability for a TEM probe electr
passing at an impact parameterx050 through single-wall carbon
nanotubes of~a! 0.5,~b! 0.6, and~c! 0.7 nm radius. The curves hav
been simulated for 100 keV electrons assuming a cutoff wave v
tor of 10 nm21. The resonance parametervp was 27.5 eV and the
damping coefficientg 2 eV. The total excitation probability is indi-
cated by a solid line. The contributions of the individual modes
dashed.
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Another situation where the overall maximum of the e
citation probability is not at the position of the first ord
excitation is shown in Fig. 5 where the effect of stro
damping is demonstrated~damping coefficientg510 eV!.
Hardly any fine structure due to the different modes can
detected and the center of the broad maximum is now fo
at 23 eV. Figures 2–5 have been simulated with a resona
parametervp of the s1p electrons of 27.5 eV as obtaine
from the experimental EELS data of planar graphite. As d
cussed in Sec. III B, simulations of the electronic propert
of graphite based on the hydrodynamic approach are b

FIG. 4. Plasmon excitation probability for a single-wall carb
nanotube of 0.6 nm radius obtained with a cutoff wave vector of~a!
1 and~b! 10 nm21. The curves have been simulated for 100 k
electrons with resonance parametervp of 27.5 eV and a damping
coefficientg of 5 eV.

FIG. 5. Plasmon excitation probability for strong dampingg
510 eV! for a single-wall nanotube of 0.6 nm radius. The res
nance parametervp was 27.5 eV and the cutoff wave vectorqc was
1 nm21.
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on the number of electrons participating in the excitation a
their effective mass. Theoretical estimates of these par
eters lead to a resonance parameter of 21.5 eV. Figu
shows the excitation probability of a single-wall carbo
nanotube obtained with 21.5 eV, a damping coefficient o
eV, and a critical wave vector of 1 nm21. It can be seen tha
taking 21.5 eV instead of 27.5 eV for the resonance para
eter causes the plasmon resonance to occur at a much l
energy. In Fig. 6 a small cutoff wave vector and medium
damping have been assumed. The maximum of the simul
spectrum is therefore found at the first order excitation mo
Analogous to the case with a resonance parameter of 27.
simulations~not shown! show that strong damping or larg
cutoff wave vectors cause the maximum to be shifted to
position of the second order resonance.

IV. CONCLUSION

The hydrodynamic theory of a two-dimensional electr
gas has been used to derive the probability of a TEM pr
electron to lose a given amount of energy when pass
through or close by a single-wall carbon nanotube. This p
mon excitation probability is of interest since it can direc
be compared to experimental EEL spectra of individu
single-wall carbon nanotubes. The simulations indicate t
such a spectrum should show a fine structure due to the
ferent oscillation modes possible in the cylindrical geome
The energy interval between successive maxima in the
structure decreases when the mode number or the tube ra
is increased. In normal experimental conditions the dipo
mode is shown to be the dominant mode which determi
the position of the overall maximum of the excitation pro
ability. There are, however, conditions in which the seco
order mode can dominate the spectrum. This is the c
when the plasmon cutoff wave vector is large, when
nanotube is short, or when the plasmon oscillation is stron
damped. The simulations further show that the plasmon
cillation behavior depends on the radius of the nanotube.
increase of the tube radius causes the plasmon resonan
occur at lower energies. It will be interesting to compare
simulations shown here with experimental spectra of in
vidual single-wall carbon nanotubes. Up to now, only me

-

FIG. 6. Excitation probability for a single-wall carbon nanotu
of 0.6 nm radius. The simulations have been carried out wit
resonance parameter of 21.5 eV, a damping coefficient of 5 eV,
a critical wave vector of 1 nm21.
4-8
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surements on bundles58 or electron transparent thin films59

have been published. Neither contribution reports any
structure in the spectra and the plasmon resonance ener
reported to be at 21.5 eV. A comparison with recent exp
mental data on individual single-wall tubes is presently c
ried out. The study shows that higher order modes can
observed in the spectra of individual tubes and that there
rather good agreement between the experimental data
the simulations. The results of this study are subject to
other publication.60
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Kulik, T. Stöckli, N. Burnham, and L. Forro´, Phys. Rev. A82,
944 ~1999!.

22J.-P. Salvetat, A. J. Kulik, G. A. D. Briggs, J.-M. Bonard, T
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