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Abstract
The Green’s function is a powerful mathematical tool in developing the theory

of condensed-matter physics. It is usually easy to write the equation in the form of
G( r, rÂ ) , but the critical challenge is to ® nd its analytical or numerical solution. In
this paper, the Green’ s function for electron scattering is reviewed, and its general
solution is given. The theory is extended into the regimes that are suitable for
numerical calculations in di� erent scattering geometries, such as the images in the
low-voltage lensless point-projection microscopy. An iterative calculation
technique is introduced for computing the Green’s function using the Born
series, and the result is applied to calculate the optical potential introduced in
electron di� raction for recovering the multiple di� use scattering e� ects. With the
Green’s function presented here and the theory reported previously by Wang
(1996, Phil. Mag. B, 74, 733), quantitative analysis of electron di� use scattering
due to short-range order of point defects and thermal di� use scattering is likely to
be feasible.

§ 1. Introduction

The Green’s function, as a powerful tool in mathematical physics, plays a vital
role in developing many theories in condensed-matter and particle physics. Using the
Green’ s function, the SchroÈ dinger equation can be transformed from its di� erential
form into an integral form, allowing introduction of the perturbation theory and
iterative calculation. The books by Abrikosov et al. (1963) and Tsvelick (1995) have
systematically summarized the general characteristics of the Green’ s function. For
dynamic electron scattering in crystalline materials and surfaces containing point
defects, the full calculation of the di� raction intensity requires the solution of the
Green’ s function (Wang 1996a, b).

Di� use scattering in electron di� raction can be produced by time-dependent
thermal vibration of crystal atoms and/or disordered or partially ordered spatial
distribution of point defects, such as vacancies and interstitials. The growth of
thin ® lms in molecular-beam epitaxy is a typical example of a partially ordered
system. The growth of the surface layer is a time-dependent process depending on
the deposition rate and the di� usion rate of the surface atoms. This layer-by-layer
growth is qualitatively described by a surface coverage parameter µ, with 0 < µ < 1,
which represents the probability that a lattice site on the surface is ® lled with an
atom. The sites un® lled with atoms are vacancies. Electron scattering from this
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system needs to be approached using the Green’s function theory (Dundarev et al.
1993, 1994). It has been rigorously proven (Wang 1996b, c) that, by inclusion of a
complex optical potential V Â in dynamic calculation, the dynamic multiple di� use
scattering due to point defects is fully included although the calculation is performed
using the equation derived under the distorted-wave Born approximation (DWBA).
This conclusion expands the applications of the existing theories for electron di� rac-
tion in a partially ordered system, but the key here is to ® nd the solution of the
Green’ s function that is required for computing the optical potential. It is generally
easy to write equations in the form of the Green’ s function; the real challenge is how
to get the solution of the equation that can be used directly for numerical calcula-
tions.

As a continuation of the previous report (Wang 1996c), this paper is intended to
review the general solution of the Green’ s function and to develop it into the formats
that are required in practical calculations for di� erent electron scattering geometry.
In § 2 the general solution of the Green’s function is given. The limiting cases of the
general solution for several special cases, such as the image in low-voltage lensless
poing-projection microscopy (Fink et al. 1991, Spence et al. 1993), will be given in
§ 3. In § 4 an interactive method for calculating the Green’s function using the Born
series is introduced. Finally, § 5 gives the calculation of the optical potential V Â . The
theory outlined in this paper is for both low- and high-energy electrons.

§ 2. Formal solution of the Green’s function

As a general approach to electron scattering, the electron source function is
represented by S(r) which characterizes the intensity distribution and size of the
source (® g. 1). The electron energy is E which is related to its wave-vector K0 by
E = (h2K2

0 ) /(2m0) , where m0 is the electron mass. If the inelastic scattering is
ignored, the scattering behaviour of the electron is governed by the SchroÈ dinger
equation

-
2

2m0
Ñ 2 - eg V0(r) - E(K0)( ) W (r) = S(r) , (1)

where V0(r) is a periodic structurally averaged crystal potential that is responsible
for the dynamic Bragg re¯ ections (Wang 1996c), and g = 1 /(1 - v2 /c2) 1 /2 stands for
the relativistic correction. The electron source function can be written as an integral
of point sources characterized by the Dirac delta functions d (r - rÂ ) :

S(r) = ò drÂ S(rÂ ) d (r - rÂ ) . (2 a)

Similarly, the wavefunction is written as a superposition of the waves generated by
point sources d (r - rÂ ) (e.g. the Green’ s function G(r, rÂ ) ) , centred at rÂ and weighted
by the intensity of the source at rÂ :

W (r) = ò drÂ S(rÂ )G(r, rÂ ) . (2 b)

Substituting eqns. (2a) and (2 b) into eqn. (1) yields

-
2

2m0
Ñ 2 - e g V0(r) - E(K0)( ) G(r, rÂ ) = d (r - rÂ ) . (3)
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This is the equation that determines the Green’s function. The solution of eqn. (3)
has been given under the small-angle scattering approximation for the zeroth-
order Laue zone re¯ ections (Wang 1995a, § 10.5). Here we outline the solution
given by Dudarev et al. (1994) for a general case without making any approxi-
mation. The details are repeated here for the convenience of discussions in later
sections.

The solution is based on the Born series with an assumption that the series
converges. This assumption holds for the known condensed matter that one is inter-
ested in. By shifting the EG term to the right-hand side in eqn. (3) and using the
Green’ s function in vacuum as the zeroth-order solution G0 (e.g. taking V0 = 0)
which satis® es

-
2

2m0
Ñ 2 - E(K0)( ) G0(r, rÂ ) = d (r - rÂ ) (4 a)

and has the solution

G0(r, rÂ ) =
2m0

2
exp (2p iK0|r - rÂ |)

4p |r - rÂ |
=

m0

2p 2 2 ò dj
exp [2p i j ·(r - rÂ ) ]

·2 - K2
0 - i0

, (4 b)

where 0 stands for an in® nite small but positive number, the general solution of
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Fig. 1

Electrons emitted from a ® nite source S are scattered by a local potential V0, and the
observation point is at r.



eqn. (3) can be written as the Born series

G(r, rÂ ) = G0(r, rÂ ) + e g ò dr1 G0(r, r1) V0(r1)G(r1, rÂ )

= G0(r, rÂ ) + e g ò dr1 G0(r, r1) V0(r1)G0(r1, rÂ )

+ (eg ) 2 ò dr1 ò dr2 G0(r, r1)G0(r1, r2) V0(r1) V0(r2)G0( r2, rÂ )

+ (eg ) 3 ò dr1 ò dr2 ò dr3 G0(r, r1)G0(r1, r2)G0(r2, r3) V0(r1)

´ V0(r2) V0(r3)G0(r3, rÂ ) + ´´´. (5)

From the expression given in eqn. (4 b), the Green’ s function is a superposition of
plane waves whose amplitudes depend on the energy of the plane-wave component.
This indicates that one may write the general solution of the Green’s function in a
similar form. This approach can be further developed with consideration of the
scattering of a plane wave, u ( j , r) = exp (2p i j ·r) , by the crystal potential, which is
determined by the SchroÈ dinger equation

-
2

2m0
Ñ 2 - E( j )( ) W

( 0)
0 (K, r) = eg V0(r) W

(0)
0 (K, r) . (6)

The solution of eqn. (6) for high-energy electron scattering can be solved using
a variety of existing theories, as reviewed elsewhere (Wang 1995a). The iterative
solution of W

(0)
0 is

W
(0)
0 ( j , r) = u ( j , r) + e g ò dr1 G0(r, r1) V0(r1) W

(0)
0 ( j , r1)

= u ( j , r) + e g ò dr1 G0(r, r1) V0(r1) u ( j , r1)

+ (eg ) 2 ò dr1 ò dr2 G0(r, r1)G0( r1, r2) V0(r1) V0(r2) u ( j , r2)

+ (eg ) 3 ò dr1 ò dr2 ò dr3 G0(r, r1)G0(r1, r2)G0(r2, r3)

´ V0(r1) V0(r2) V0(r3) u ( j , r3) + ´´´. (7)

We now go back to the general solution of the Green’s function. Substituting the last
G0 in each term of eqn. (5) by the integral form of G0 given in eqn. (4 b), while the
other G0 are kept the same, eqn. (5) becomes

G(r, rÂ ) =
C
p ò dj

exp (- 2p i j ·rÂ )
·2 - K2

0 - i0 ( u ( j , r) + eg ò dr1 G0(r, r1) V0(r1) u ( j , r1)

+ (eg ) 2 ò dr1 ò dr2 G0(r, r1)G0(r1, r2) V0(r1) V0(r2) u ( j , r2)

+ (eg ) 3 ò dr1 ò dr2 ò dr3 G0(r, r1)G0(r1, r2)G0(r2, r3)

´ V0(r1) V0( r2) V0(r3) u ( j , r3) + ´´´) , (8)
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where C = m0 /(2p
2) . A comparison of the terms inside the large parentheses in eqn.

(8) with eqn. (7) leads to

G(r, rÂ ) =
C
p ò dj

exp (- 2p ij ·rÂ )
( ·2 - K2

0 - i0)
W

(0)
0 ( j , r) . (9)

This is a key relation that correlates the Green’ s function with the solution of the
SchroÈ dinger equation for an incident plane wave of wave-vector j . Using an identity

ò du
exp [2p iu·(rÂ Â - rÂ ) ]

p (u2 - K2
0 - i0)

=
exp [2p iK0|rÂ Â - rÂ |]

|rÂ Â - rÂ |
, (10 a)

or
exp (- 2p i j ·rÂ )
p (·2 - K2

0 - i0)
= ò drÂ Â exp (- 2p ij ·rÂ Â )

exp (2p iK0|rÂ Â - rÂ |)
|rÂ Â - rÂ |

, (10 b)

the Green’ s function can be written in a di� erent form

G(r, rÂ ) = C ò drÂ Â
exp (2p iK0|rÂ - rÂ Â |)

|rÂ - rÂ Â | ò dj exp (- 2p i j ·rÂ Â ) W
( 0)
0 ( j , r)( ) .

ï
ï
ï
ï

(11 a)

It has been proven that the G function given by eqn. (11) satisfy the reciprocity
theorem G( r, rÂ ) = G(rÂ , r) (see the appendix), which means that the wavefunction
`observed’ at r due to a point source at rÂ is the same as the wavefunction at rÂ due to
a point source at r, which is

G(r, rÂ ) = C ò drÂ Â
exp (2p iK0|r - rÂ Â |)

|r - rÂ Â | ò dj exp (- 2p ij ·rÂ Â ) W
(0)
0 ( j , rÂ )( ) . (11 b)

This is the exact expression for the Green’s function for a general case. The most
beautiful part of this solution is the exact relationship between the conventional
solution of the SchroÈ dinger equation for plane-wave incidence with the solution for
point source, but the amount of numerical calculation is very large. The limiting cases
of this general solution for several practical situations are given in the next section.

§ 3. Applications

3.1. Imaging in low-voltage lensless point-projection microscopy
We now consider the scattering geometry of the low-voltage lensless point-pro-

jection microscopy (® gure 2 (a)), in which a point source is positioned in the front of
the specimen and a low voltage (less than 400 V) is applied to the tip (Fink et al.
1991, Spence et al. 1993). The image is recorded at a plane that is far from the
specimen and it is a `projection’ of the crystal structure superposed with Fresnel
fringes. The image magni® cation is determined by the distance of the source to the
specimen and the distance from the tip to the projection screen. The Born series form
of the Green’s function (eqn. (5)) has been applied by Kreuzer et al. (1992) to
calculate the images with the use of the spherical harmonics expansion of the G0

function. In this section, we outline the application of eqn. (11 b) for the calculation
of this type of image.

In this scattering geometry with a magni® cation larger than 500 000 ´ , we can
assume that the observation point is located at large distances so that r @ rÂ ; thus

|r - rÂ Â | = (r2 + rÂ Â
2 - 2r·rÂ Â )

1/2 < r - r·rÂ Â
r

;
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eqn. (11 b) is approximated as

G(r, rÂ ) < C
exp (2p iK0r)

r ò drÂ Â exp - 2p iK0
r·rÂ Â

r( ) ò dj exp (- 2p i j ·rÂ Â ) W
( 0)
0 ( j , rÂ )( )

= C
exp (2p iK0r)

r
W

(0)
0 ( j r, rÂ ) , (12)

where j r = - K0(r /r) , antiparallel to r. The image intensity observed at r for a point
source located at rÂ is

I(r, rÂ ) = |G(r, rÂ ) |
2 = C2 |W (0)

0 ( j r, rÂ ) |
2

r2 , (13)
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Fig. 2

(a) The geometry of the low-voltage lensless point-projection microscopy, in which a thin
specimen is illuminated by a point source S and the observation screen is located at
a farther distance. The image magni® cantion M < z /zÂ . (b) An equivalent image
formation process in TEM, where the electron wavefunction at DÂ due to an
incident plane wave from SÂ equals the wave observed at D owing to a point source
at S. The image observed in point-projection microscopy is equivalent to the shadow
image observed in large-angle convergent-beam TEM.



which means the intensity observed at r is the intensity observed at rÂ for an incident
plane wave with a wave-vector j r antiparallel to r. In other words, the wave observed
at D (detector) when a point source is located at S (source) is equivalent to the wave
observed at S due to an incident plane wave of wave-vector j r = - K0(r /r) from D.
This is just the reciprocity theorem. The factor of 1 /r2 represents the decay in the
intensity of the spherical wave as the observation point moves away from the source.
The observed intensity is scaled according to |W (0)

0 ( j r, rÂ ) |
2, which is the solution of

the SchroÈ dinger equation at rÂ for an incident plane wave with wave-vector j r .
To illustrate the physical meaning of eqn. (12), an image formation process in

transmission electron microscopy (TEM) following the form of the wavefunction
W

(0)
0 ( j r, rÂ ) is given in ® g. 2 (b), in which a specimen is illuminated by a convergent

beam and the specimen is located at zÂ below the front focal plane of the transmis-
sion electron microscope, with zÂ @ d. Within the convergence cone, each incident
beam direction is speci® ed by a wave-vector K0n, where n = r /r stands for the unit
vector of position r. This is the convergent beam shadow imaging in TEM with a
defocus equal to the tip-to-specimen distance zÂ (Spence 1992). From the reciprocity
theorem, the intensity observed at DÂ due to an incident plane wave with wave-
vector K0n from SÂ is the same as the intensity observed at point D due to a point
source at S. From the mathematical relation given by eqn. (13), the image is equiva-
lent to the bright-® eld image in scanning transmission electron microscopy (STEM),
formed using a point detector positioned at the optic axis at DÂ while a plane wave is
rocked (or scanned) across the angular range of the cone convergence, in agreement
with the conclusion of Spence and Qian (1992). Therefore the image calculation is
similar to the simulation of STEM images with consideration the defocus zÂ . We now
outline the formal dynamic theory for simulating this type of images.

For a thin crystal slab in the geometry given in ® g. 2 (b) illuminated by an
incident plane wave exp (2p iKn·rÂ ) , the transmitted wave at the exit face of the
crystal is written in the Bloch wave form (Humphreys 1979)

W
( 0)
c0 = exp [2p iK0n·rÂ ] U

(0)
c0 (14 a)

and

U
(0)
c0 (K0n, rÂ ) = å

i
a i(K0n) å

g
C( i)

g (K0n) exp [2p ig·bÂ + 2p i(gz + t i)d], (14 b)

where a i are the superposition coe� cients determined by the boundary conditions,
bÂ = (xÂ ,yÂ ) , C( i)

g are the Bloch wave coe� cients determined by the eigenequation,
and d is the specimen thickness. The numerical calculation of a i and C( i)

g for low-
energy electrons has been given by Qian et al. (1993).

The propagation of this wave from the exit face of the crystal to the front-focal
plane is characterized by a convolution of the Fresnel propagator under the small-
angle scattering approximation, thus the wave observed at the front focal plane (i.e.
the DÂ plane) of the objective lens is (Cowley 1995)

U
( 0)
0 (K0n, rÂ ) = [U (0)

c0 (K0n,rÂ ) ] Ä P(bÂ ,z) . (15)

where Ä stands for the convolution calculation of bÂ , and the propagation function
for an inclined incidence is (Ishizuka 1982, Wang 1995a, § 3.2)

P(bÂ , zÂ ) =
K0

izÂ
exp [2p iK0(zÂ - n·rÂ ) ]exp

p ibÂ
2K0

zÂ( ) . (16)
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If the cross-over point DÂ is located at rÂ = (0,0, zÂ ) the local electron wavefunction
is given by

U
(0)
0 (K0n, rÂ ) |bÂ = 0 = exp [2p iK0(1 - nz)zÂ ] å

i
a i(K0n) å

g
C( i)

g (K0n) exp [2p i(gz + t i)d]

´ exp
- p i[(K0nx + gx) 2 + (K0ny + gy) 2]zÂ

K0( ) . (17)

If the objective lens is an ideal lens without aberration, the image intensity is given by

I(r) =
C2

r2 å
i
å

j
a i(K0n) a *j(K0n) å

g
å

h
C( i)

g (K0n)C
( j)
h *(K0n)

´ exp [2p i(gz - hz + t i - t j)d]

´ exp
p i[(K0nx + hx) 2 + (K0ny + hy) 2 - (K0nx + gx) 2 - (K0ny + gy) 2]zÂ

K0( ) .

(18)

If the electron cross-over is at the specimen, for example zÂ = 0, eqn. (18) becomes

I(r) =
C2

r2 å
i
å

j
a i(K0n) a *j (K0n) å

g
å

h
C( i)

g (K0n)C
( j)
h *(K0n)

´ exp [2p i(gz - hz + t i - t j)d], (19)

which is the intensity distribution in the convergent-beam electron di� raction
(CBED) pattern with disc overlap (Spence and Zuo 1992). The term contained in
square brackets in eqn. (17) represents the defocus e� ect. Therefore the calculation is
similar to the rocking surface in defocused CBED except the beam convergence is
considerably larger than the Bragg angles.

3.2. Plane-wave incidence in transmission electron microscopy
In high-energy electron di� raction, the source is usually considered to locate at

in® nity from the specimen, for example zÂ = - ¥ , but the observation point can be
near the specimen, which is de® ned as the front focal plane of the objective lens in
TEM. The wave emitted by the source is equivalent to a plane wave with wave-vector
K0 when falls on the surface of the specimen (® g. 3), and the direction of K0 is
antiparallel to rÂ and is determined by

K0x = - xÂ
rÂ

K0, K0y = - yÂ
rÂ

K0, K0z = - zÂ
rÂ

K0 (20)

if the origin is de® ned at the intersection of the optic axis with the crystal entrance
surface. By assuming that rÂ @ rÂ Â in the integral of the Green function in eqn. (11 a),
this yields

|rÂ - rÂ Â | = (rÂ
2 + rÂ Â

2 - 2rÂ ·rÂ Â )
1 /2 < rÂ - rÂ ·rÂ Â

rÂ
= rÂ +

K0 ·rÂ Â
K0

;
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thus

G( r, rÂ ) < C
exp (2p iK0rÂ )

rÂ ò drÂ Â ò dj exp (2p iK0 ·rÂ Â ) exp (2p ij ·rÂ Â ) W
( 0)
0 (- j , r)

= C
exp (2p iK0rÂ )

rÂ
W

(0)
0 (K0, r) . (21)

where the spherical wave represents the wave emitted from the point source when it
reaches the crystal surface, W

(0)
0 (K0,r) is just the conventional elastic scattering wave

arising from an incident plane wave with wave-vector K0. The observation point is
usually chosen as the exit face of the crystal, which is de® ned as the front local plane
of the objective lens. This is the basis of TEM imaging.

3.3. Point source convergent-beam di� raction
In dynamic calculation for di� use scattering in high-energy electron scattering

and under the DWBA, a two-dimensional Fourier transform of the Green’ s function
is needed. This calculation can be represented by the geometry in which a point
source is placed at rÂ in front of the specimen and a thin lens is positioned after
the specimen to splits the waves propagating along di� erent directions (® g. 4 (a)).
Since the di� raction pattern is recorded at a large distance from the specimen, we can
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approximately take z = ¥ , and the calculation is to ® nd the distribution of the
scattered electrons in reciprocal space, a mathematical description of this process
is given below according to eqn. (9):

Ĝ(ub,z, rÂ ) = ò db exp (- 2p iub ·b) G(b,z, rÂ )

=
C
p ò d·z

exp (2p i·zz)
·2

z + u2
b - K2

0 - i0
W

(0)
0 (- ub, - ·z, rÂ ) , (22)

where ub is a reciprocal-space vector parallel to the observation plane (x,y). Using
an identity of

1
x - xÂ - i0

= P
1

x - xÂ( ) + ip d (x - xÂ ) , (23)

where P signi® es the principal value (i.e. the function 1 /(x - xÂ ) is given as
1 /(x - xÂ ) for all values of xÂ except at the point x = xÂ , for which 1 /(x - xÂ ) is
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Fig. 4

(a) Point-source electron di� raction in single-lens TEM. (b) An equivalent process based on
the reciprocity theorem. The wavefunction observed at point ub in reciprocal space
due to a point source S at rÂ is equivalent to that observed at DÂ arising from an
incident plane wave with wave-vector K = - (ub,·z) , striking the crystal from the
bottom.



taken to be identically zero), eqn. (22) becomes

Ĝ(ub, z = ¥ , rÂ ) =
C
p ò d·z P

exp (2p i·zz)
·2

z + u2
b - K2

0( )[
+ i

p exp (2p i·zz)
2·z

d [·z - (K2
0 - u2

b) 1 /2]]W
(0)
0 (- ub, - ·z, rÂ )

=
im0

4p 2
exp (2p i·zz)

·z
W

( 0)
0 (- ub, - ·z, rÂ ) (24)

where the ® rst term vanishes because of the rapid oscillation of the exponential
within the integral at large z, and ·z = (K2

0 - u2
b) 1/2. This is the same result derived

using an alternative technique (Dudarev et al. 1993). Therefore the di� raction ampli-
tude at ub is proportional to the electron wave scattered to rÂ arising from a plane-
wave incidence with wave-vector K = - (ub,·z) , where the negative sign represents
the wave striking the crystal from the bottom side. This is again the result of the
reciprocity theorem, as shown in ® g. 4 (b).

§ 4. Iterative calculation of the Green’s function by the Born series

The calculation of the Green’s function, in principle, can be carried out following
eqn. (9), but the computation of this equation, however, could be huge because of
the requirements of the elastic waves risen from a wide range of wave-vectors. In this
section, we introduce the Born series technique for calculation of the Green’ s func-
tion. As stated in eqn. (5), the ® rst term is the Green’ s function in free space and the
second term is the kinematical scattering component of the Green’ s function. The
nth term u n(r, rÂ ) in eqn. (5) is related to the (n - 1)th term u n- 1(r, rÂ ) by a recurrence
formula

u n(r, rÂ ) = eg ò dr1 G0(r, r1) V0(r1) u n- 1(r1, rÂ ) . (25)

For easy calculation, a double Fourier transform of u n is taken:

^u n(u,v) = ò dr ò drÂ exp (- 2p iu·r) exp (- 2p iv·rÂ ) u n(r, rÂ )

= D
1

u2 - K2
0 - i0 ò dr1 exp (- 2p iu·r1) V0(r1) ^u n- 1(r1,v)

= D
1

u2 - K2
0 - i0 [V0(u) Ä ^u n- 1(u,v) ], (26)

where V0(u) is the Fourier transform of the potential V0(r) , and D =
(eg m0) /(2p

2 2) . This relation clearly states that the nth-order term is a convolution
of the crystal scattering factor with the (n - 1)th-order term. This is a useful relation-
ship for calculating the Green’ s function using mathematical induction. The
àverage’ potential V0 is de® ned as a periodic function and it can be written as a
Fourier series:

V0(r) = å
g

Vg exp (2p ig·r) or V0(u) = å
g

Vg d (u - g) , (27)

where Vg are the so-called structure factors which are related to the atom types and
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atom distribution in the unit cell. From eqn. (26),

^u n(u,v) = D
1

u2 - K2
0 - i0 å

g
Vg ^u n- 1(u - g,v) . (28)

The zeroth order is

^u 0(u,v) =
C
p

d (u + v)
v2 - K2

0 - i0
, (29)

from which the ® rst order is calculated:

^u 1(u,v) =
CD
p

1
(u2 - K2

0 - i0) (v2 - K2
0 - i0) å g1

Vg1 d (u + v - g1) . (30)

A substitution of eqn. (30) into eqn. (28) gives the second-order term

^u 2(u,v) =
CD2

p

1
(u2 - K2

0 - i0) (v2 - K2
0 - i0) å g1

å
g2

Vg1 Vg2 d (u + v - g1 - g2)

( |u - g1|2 - K2
0 - i0)

.

(31)

The third-order term is calculated accordingly:

^u 3(u,v) =
CDn

p

1
(u2 - K2

0 - i0) (v2 - K2
0 - i0)

´ å
g1
å
g2
å
g3

Vg1 Vg2 Vg3 d (u + v - g1 - g2 - g3)

( |u - g1|2 - K2
0 - i0) ( |u - g1 - g2|2 - K2

0 - i0)
. (32)

For the higher-order terms with n > 1,

^u n(u,v) =
CDn

p

1
(u2 - K2

0 - i0) (v2 - K2
0 - i0)

´ å
g1

´´´ å
gn

Vg1 ´´´Vgn

´ d (u+ v- å
n

gn)/ ( |u- g1|2 - K2
0 - i0) ´´´( |u- g1- ´´´- gn- 1|2 - K2

0 - i0)

=
CDn

p [P( 1
u2 - K2

0 ) + i
p

2K0
d (u - K0)][P( 1

v2 - K2
0 ) + i

p

2K0
d (v - K0)]

´ å
g1

´´´ å
gn

Vg1 ´´´Vgn d u + v - å
n

gn( ) P
1

|u - g1|2 - K2
0( )[{

+ i
p

2K0
d ( |u - g1| - K0)]

´ ´´´ P
1

|u - g1 - ´´´- gn- 1|2 - K2
0( )[

+ i
p

2K0
d ( |u - g1 - ´´´- gn- 1| - K0)]}. (33)
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These terms appear to have singularities while performing the integrals but, as will be
shown in the next section, the integrals will be split into volume, surface, line and
point integrals, in which the singularities are automatically resolved.

§ 5. Calculation of the optical potential

As derived in the paper by Wang (1996c), dynamic multiple di� use scattering
introduced by point defects (with or without short-range order) and thermal di� use
scattering can be included in the calculation with introduction of a complex optical
potential. This potential is a non-local function and it is best presented in the matrix
form

V Âg
( i)
h =

eg
Vc ò dQ ò dQÂ S(Q,QÂ )Ĝ(ki + g - Q,QÂ - ki - h) , (34)

where S is the dynamic form factor for the di� use scattering (Wang 1995b, 1996a), g
and h are reciprocal-lattice vectors, ki is the electron wave-vector in the Bloch wave
representation, Vc is the volume of the crystal, and the integrations of Q and QÂ
cover the entire reciprocal space. In all the current dynamic calculations, the optical
potential takes the form in which the Green’ s function is approximated by its form in
free space as ® rst introduced by Yoshioka (1957). We now use the ® rst-order approx-
imation to illustrate the consequence of including the crystal potential in the calcula-
tion of the optical potential V Â . If only the ® rst two terms are kept for the Green’s
function, the double Fourier transform of G is

Ĝ(u,v) < C
p

d (u + v)
v2 - K2

0 - i0

+
CD
p å

g1

Vg1 d (u + v - g1)( ) / (u2 - K2
0 - i0) (v2 - K2

0 - i0) ; (35)

the optical potential given in eqn. (34) is

V Âg
( i)
h < eg C

p Vc ò dQ ò dQÂ
S(Q,QÂ )

|ki + g - Q|2 - K2
0 - i0 [d (QÂ - Q + g - h)

+ D å
g1

Vg1 d (QÂ - Q + g - h - g1)( ) / ( |QÂ - ki - h|2 - K2
0 - i0)]

=
eg C
p Vc ò du ò dv

S(ki + g - u,v + ki + h)
u2 - K2

0 - i0

´ [d (u + v) + D å
g1

Vg1 d (u + v - g1)( ) / (v2 - K2
0 - i0)]

=
eg C
p Vc ò du[S(ki + g - u,ki + h - u)

u2 - K2
0 - i0

+ D å
g1

Vg1

S(ki + g - u,ki + h - u + g1)

(u2 - K2
0 - i0) ( |u - g1|2 - K2

0 - i0) ]
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=
eg C
p Vc [ ò d¿(u)

S(ki + g - u,ki + h - u)
u2 - K2

0

+ i
p

2K0 ò ds (u) S(ki + g - u,ki + h - u)]
+

eg CD
p Vc å

g1

Vg1[ ò d¿Â (u)
S(ki + g - u,ki + h - u + g1)

(u2 - K2
0 ) ( |u - g1|2 - K2

0 )

+ i
p

2K0 ò ds Â (u)
S(ki + g - u,ki + h - u + g1)

|u - g1|2 - K2
0

+ i
p

2K0 ò ds Â (u - g1)
S(ki + g - u,ki + h - u + g1)

u2 - K2
0

- p 2 ò ds Â Â (u) S(ki + g - u,ki + h - u + g1) d ( |u - g1| - K0)], (36)

where the terms in the ® rst large square brackets are those ® rst derived by Yoshioka
(1957) when the Green’ s function if replaced by its form in free space; the terms
contained in the second large square brackets are those from the ® rst-order kinema-
tical electron di� raction as included in the Green’ s function calculation; the integral
¿Â (u) is over all reciprocal space except for the spherical shells de® ned by |u| = K0

and |u - g1| = K0, the two Ewald spheres centred at u = 0 and u = g (® g. 5 (a)); the
integral s Â (u) is over the Ewald sphere surface de® ned by |u| = K0 except for points
falling on the other Ewald sphere de® ned by |u - g1| = K0; the integral s Â (u - g1) is
over the Ewald sphere surface de® ned by |u - g1| = K0 except for the points inter-
secting the other Ewald sphere de® ned by |u| = K0; the last integral s Â Â (u) covers
the intersection lines of the two Ewald spheres (i.e. a line integral). The volume and
line integrals give a real component correction to the potential; the surface integrals
give an imaginary component which is usually referred to as the absorption poten-
tial. Since the calculation includes the ® rst-order di� raction e� ect in the Green’s
function, the Ewald sphere |u - g1| = K0 represents the newly generated scattering
centre at g1 due to Bragg re¯ ection. The sum over g1 is to consider the contribu-
tions from all the possible Bragg re¯ ections scaled kinematically by the structure
factor Vg1 .

The number of spheres involved in each calculation depends on the order of
scattering to be included in the Green’ s function calculation. For higher-order scat-
tering, the integral of points characterized by delta functions (such as the joint points
of three spheres) is possible, as shown in ® g. 5 (b) for the second-order scattering.
The split of the integrals into volume, surface and line integrals automatically resolve
the singularity problem in the calculation. Further, the function 1 /(u2 - K2

0 ) is an
asymmetric function when u ® K0 + 0 and u ® K0 - 0; thus the integral is close to
zero around u = K0.

§ 6. Conclusion

In this paper we have introduced the properties and solution of the Green’s
function for electron scattering in a general scattering geometry for both high-
and low-energy electrons. The theory has been extended into the regimes that are
suitable for numerical calculations in di� erent scattering geometry, such as the low-
voltage lensless point-projection microscopy. The image calculation is equivalent to

800 Z. L. Wang



the simulation of on-axis bright-® eld shadow images in STEM when the incident
electron probe is a plane wave.

An iterative calculation technique is introduced for computing the Green’ s func-
tion using the Born series, and the result has been applied to calculate the optical
potential introduced in electron di� raction for recovering the multiple di� use scat-
tering e� ects that have been ignored in most of the current calculations. With the
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Fig. 5

(a) A model of two interpenetrating Ewald spheres centred at u = 0 and u = g respectively,
showing the volume, surface and line integrals introduced in eqn. (36). (b) A model for
three interpenetrating Ewald spheres illustrating the occurrence of point integral (e.g.
the integral of the delta function).



Green’ s function presented here, the theory given in the previous paper (Wang
1996c) can be fully implemented numerically. This is likely to be a unique and full
inclusion of the dynamic di� use scattering arisen from short-range order of point
defects and thermal di� use scattering, providing the theoretical basis for quantifying
experimental data. This is important for quantitative characterization and re® ne-
ment of crystal structures with partially ordered point defects. This is foreseen with
the current experimental feasibility of recording energy-® ltered electron di� raction
patterns and images.

A PPENDIX
We now prove that the solution given by eqn. (9) satis® es G(r, rÂ ) = G(rÂ , r) .

Substituting eqn. (7) into eqn. (9), one has

G(r, rÂ ) =
m0

2p 2 2 ò dj
exp (- 2p i j ·rÂ )
·2 - K2

0 - i0 ( u ( j , r) + eg ò dr1 G0(r, r1) V0( r1) u ( j , r1)

+ (eg ) 2 ò dr1 ò dr2 G0(r, r1)G0(r1, r2) V0(r1) V0(r2) u ( j , r2)

+ (eg ) 3 ò dr1 ò dr2 ò dr3 G0(r, r1)G0(r1, r2)G0(r2, r3) V0(r1) V0(r2) V0(r3) u ( j , r3)

+ ´´´) . (A 1)

Integrating over j and using eqn. (10 a) yield

G(r, rÂ ) = G0(r, rÂ ) + e g ò dr1 G0(r, r1) V0(r1)G0(r1, rÂ )

+ (eg ) 2 ò dr1 ò dr2 G0(r, r1)G0(r1, r2) V0(r1) V0(r2)G0( r2, rÂ )

+ (eg ) 3 ò dr1 ò dr2 ò dr3 G0(r, r1)G0(r1, r2)G0(r2, r3)

´ V0(r1) V0(r2) V0(r3)G0( r3, rÂ ) + ´´´. (A 2)

Since G0(r, rÂ ) = G0(rÂ , r) , exchanging the positions of the G0 functions and the
sequence of V0 values and through variable substitution lead to

G(r, rÂ ) = G0(rÂ , r) + e g ò dr1 G0(rÂ , r1) V0(r1)G0(r1, r)

+ (eg ) 2 ò dr1 ò dr2 G0(rÂ , r1)G0(r1, r2) V0(r1) V0(r2)G0(r2, r)

+ (eg ) 3 ò dr1 ò dr2 ò dr3 G0(rÂ , r1)G0(r1, r2)G0(r2, r3)

+ V0(r1) V0(r2) V0(r3)G0( r3, r) + ´´´

= G(rÂ , r) (A 3)

which is the well known reciprocity theorem in optics.
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If the positions of the point source and the observation point are translated by
the same lattice vector Rm in a periodically structured crystal, for example
V0(r - Rm) = V0(r) , the corresponding Green’ s function is

G(r- Rm,rÂ - Rm) = G0(r- Rm,rÂ - Rm) + eg ò dr1 G0(r- Rm,r1) V0(r1)G0(r1,rÂ - Rm)

+ (eg ) 2 ò dr1 ò dr2 G0(r - Rm, r1)G0( r1, r2)

´ V0(r1) V0(r2)G0(r2, rÂ - Rm)

+ (eg ) 3 ò dr1 ò dr2 ò dr3 G0(r - Rm, r1)G0(r1, r2)G0(r2, r3)

´ V0(r1) V0(r2) V0(r3)G0(r3, rÂ - Rm) + ´´´. (A 4)

Since G0(r - Rm, rÂ - Rm) = G0(r, rÂ ) , a variable substitution of ri by ri - Rm gives

G(r - Rm, rÂ - Rm) = G(r, rÂ ) . (A 5)

Therefore the same wavefunction is observed if the source and the observation point
are displaced by the same lattice vector, provided that the crystal is periodic and
in® nitely large.
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k | U 0(K0,ub, t) |2 l ts < |k U 0(K0,ub, t) l ts|2.


