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Abstract—Plasmon oscillation is a collective excitation of electrons in a valence band of a solid material. The motion and
polarization of valence electrons under the impact of a fast moving charged particle directly reflect the solid state properties of the
material. Oscillations of surface charges depend sensitively on dielectric properties of the material and, more importantly, on the
geometrical configuration of the media. The advances of electron microscopy techniques have made it possible to study local
excitations from each individual particle smaller than a few nanometers in diameter. Dielectric response theory has shown
remarkable success in describing the observed valence-loss spectra and resonance modes. This review gives a systematic description
on the classical electron energy-loss theory and its applications in characterizing interband transition and plasmon excitations in
thin films, surfaces, interfaces, isolated particles and supported particles of different geometrical configurations. These fundamental
studies are important for characterizing many advanced nanophase and nanostructured materials of technological importance. This
article is focused on quantitative calculation of valence-loss spectra acquired from different geometrical configurations of dielectric
objects. The classical energy-loss theory is equivalent to the quantum mechanical theory, provided all the scattered electrons are
collected by the spectrometer. The hydrodynamic model is also described to include fluctuation of electron density in metallic
particles smaller than 10 nm in diameter. Applications of valence electron excitation spectroscopy are demonstrated using
numerous experimental results. Copyright © 1996 Elsevier Science Ltd.
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I. INTRODUCTION case in which the electrons can move ‘freely’ in the sea,

the system can be treated as an electron gas. This case is

When a fast electron passes through a thin metal foil, best represented by aluminum metal. The outer shell
the most noticeable energy-loss is to plasmon oscilla- electrons can be considered as free electrons. The
tions in the sea of conduction electrons. For an ideal negatively charged particles are mixed with nuclei,

forming a solid state plasmon ‘gas’. The resonance

* Corresponding author. Fax: (404) 894-9140; e-mail: zhong. freq‘?ency of this pl.asmon iS. direCFly _related to the
wang@mse.gatech.edu density of electrons in the solid. This simple plasmon
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model may also be adopted to describe the valence
electron excitation of semiconductor materials, such as
Si. For non-conductive materials, the plasmon model is
generalized into valence electron excitation. In practice,
plasmon oscillation has been used as a universal phrase
to describe the excitation of valence electrons in solids
although it was first defined for free electron metals.

Valence band structure is solely determined by the
solid state structure of the material. The collective
excitation of electrons in the valence states will produce
numerous low-energy excited states, resulting in the
energy-loss of the incident electron. A detailed study of
valence electron excitation by electron energy-loss
spectroscopy (EELS) can provide substantial informa-
tion about the structure of valence bands. The
geometrical shape of the medium determines resonance
modes of surface charge oscillations. Surface charges
induced by the moving particle can affect the physical
adsorption of the particle on the surface (Echenique and
Pendry, 1975; Schmeits and Lucas, 1977). Plasmon
excitations can also reduce or enhance the emission rate
of secondary electrons from the solid surface because of
the Coulomb interaction (Gervasoni and Arista, 1992;
Mullejans et al., 1993).

Many sophisticated quantum mechanical many-body
theories have been developed to characterize the
interactions of electrons in metals (Bohm, 1953;
Nozieres and Pine, 1958; Ferrell, 1956, 1957; Stern and
Ferrell, 1960). These theories are based on the harmonic
oscillator model of plasmons; the plasmon is considered
as a quantum excitation, analogous to a phonon in
lattice dynamics. However, the theories become very
complex if the solid is a non-metallic material so that the
electron gas model is no longer valid. The valence band
of a crystalline material is a collection of many
electronic states, and it is usually characterized by a
dielectric function e&(w,q), which depends on the
frequency w of the plasmon oscillation and the wave
vector q of the disturbance (Lindhard, 1954). The
dielectric function characterizes the polarization re-
sponse of the medium to an electric field generated by
an external source, such as a fast moving electron. This
interaction process results in the loss of electron energy
due to excitation of interband transitions and plasmon
oscillations. The analysis of electron energy-loss spectra
provides direct information on the excitation modes of
the solid. It is now possible to generate an electron
probe smaller than 0.5 nm in a scanning transmission
electron microscope (STEM), so that the local excitation
of a small particle can be analyzed. This is a powerful
technique which allows one to study valence-band
electronic structures of nanophase materials at high
spatial resolution.

There are a few review articles on dielectric excitation
of surfaces. The review by Bah et al. (1992) was focused
on layered dielectric and composite dielectric materials.
Dielectric excitations in spherical and cylindrical geo-
metries were described by Kliewer and Fuchs (1974).
The review by Lucas and Sunjic (1972) was concentrated
on the quantum mechanical description of plasmon
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excitation, and a comparison between the classical
theory and the quantum theory was also given. The
book by Raether (1980) gave a comprehensive descrip-
tion on the volume and surface excitations. The review
of Echenique ef al. (1990) gives a thorough description
on the dynamic screening of a fast ion interacting with
condensed matter. A recent review by Schattschneider
and Jouffrey (1995) gives a systematic coverage on the
nature and dispersion of plasmon oscillations. Most of
these reviews concentrate on the plasmon resonance
modes rather than the energy-loss spectra.

The objective of this review is focused on quantitative
calculations of EELS spectra for different dielectric
media in order to provide a comprehensive coverage of
the valence electron excitation in surfaces, interfaces,
nanotubes and supported and unsupported particles.
Starting from fundamental dielectric response theory, a
step-by-step application of the theory for calculating
valence-loss spectra in planar interface geometries is
presented. Then, the applications of the theory in
various excitation configurations are reviewed. The
effect of electron density fluctuation in a small metal
particle is considered with the use of the hydrodynamic
model. Finally, the equivalence is proven between
classical energy-loss theory and the quantum mechanical
approach, thus establishing a basis for applying di-
electric response theory in valence electron excitations.

This article covers only collective excitation in solids,
which occurs in the energy-loss range less than
approximately 30-40 eV. No multiple- and multi-
plasmon excitations are considered. Applications of
inner-shell ionization edges in EELS can be found
elsewhere (Egerton, 1986; Colliex, 1984). A review of the
various inelastic scattering processes in electron diffrac-
tion and imaging can be found elsewhere (Wang, 1995).

II. CLASSICAL ELECTRON ENERGY-LOSS
THEORY

A. Dielectric function

The electron energy loss associated with a single-loss
(or single-scattering) plasmon excitation is usually less
than 40 eV. The real space scale associated with charge
oscillations is for the most part much larger than the
interatomic distance in solids. Thus, the response of a
dielectric system to the long-range electromagnetic fields
can be described by a continuum medium theory, and
the medium is characterized by a macroscopic dielectric
function &(w,q). A majority of the experimental studies
of surface dynamical properties are focused on the long-
wavelength surface excitation. Dielectric response
theory has shown remarkable success in describing
experimental results in this field.

The dielectric function depends not only on the
frequency of the charge oscillation but also on the
wave vector, ¢, of the excitation. The q dependence of ¢
is referred to as the dispersion characteristic of the
dielectric medium; this relationship characterizes the
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non-local response property of the medium as described
below. For a bulk, homogeneous, isotropic system, the
electric displacement vector (D)(r,7) is related to the
electric field by

®,)(r,1) = £ J dt’J de(t— 7,0 —r)E(, ?),

—00 —00

(2.1)

where &(r—r',t—1) is a real-space, real-time response
function. For a general case, ¢ is a tensor containing nine
components. The Fourier transform of this equation in
frequency space is

D(r,w) = 80[ dr')e(w,r — ¥)E(r, w).

—00

(e o}

(2.2)

This is a convolution relation. In this paper, the
Fourier transform of a function A (r,t) is denoted as
A(r,0). The entire theoretical analysis of this paper is
based on the local response approximation for homo-
geneous media, which means

glw,r—r) =(r —r)e(w), (2.3)

and &(w) is independent of the wave vector q, i.€., no
dispersion. Thus

D(r, w) = ge(w)E(r, o). (2.4)

The dielectric function is usually a complex function.
As will be shown in future sections, the imaginary
component ¢ describes the energy loss of the incident
electron.

Figure 1a shows a plot of the real (¢;) and imaginary
(&) components of the dielectric function of GaAs. The
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Fig. 1. Plot of the real and imaginary components of the
dielectric function of GaAs. Energy resolution 1 eV.
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imaginary part has the same order of magnitude as the
real component. Fig. 1b shows the energy loss function
of GaAs. A plasmon peak located at 14.5 eV is seen
which corresponds to the excitation of the volume
plasmon. The experimentally measured dielectric func-
tions for simple compounds, semiconductors and metals
have been tabulated in the book edited by Palik (1985).

If the dielectric response is non-local (i.e. ¢ depends on
r), D is a convolution of ¢ with E in real space. In
momentum space, D(q, w)=¢y &(w, q) E(q, ). For an
inhomogeneous medium, the dielectric function is
expressed in a form of tensor, a description of the
plasmon excitation can be found elsewhere
(Schattschneider and Jouffrey, 1995).

The dielectric function of an ionic crystal is closely
related to the phonon characteristics of the crystal. The
dielectric function characterizes the polarization re-
sponse of the medium to an external electric field. The
interactions among the atoms directly determine the
phonon dispersion relations of the crystal. Thus, the
phonon modes directly influence the polarization
response of the crystal, because both the nuclei motion
and electron motion affect the polarization of the
crystal. For a diatomic ionic crystal, the dielectric
response function is (Kliewer and Fuchs, 1974)

0l — w?
&(w) = S(w)h, (2:5)

where wro is the long-wavelength transverse optical
phonon frequency and w; o is the longitudinal optical
frequency. This equation clearly illustrates the relation-
ship between phonon modes in crystals and the dielectric
response properties of the crystal.

B. Dielectric response theory

This theory aims to give a quantitative description on
the response of a dielectric system when it is exposed to
an external field. The impact of an incident electron is
equivalent to a time-dependent pulse, which causes
transitions of valence electrons and results in plasmon
oscillations. Classical dielectric response theory is based
on the assumptions described below. An incident
electron is treated as a classical particle following a
pre-defined trajectory, which is assumed not to be
affected by the interaction between the incident electron
and the dielectric media. There is only one electron
interacting with the system at a time; no interaction and
no correlation between successive incident electrons is
considered. These are excellent approximations for the
current and current density provided by a field emission
source in STEM (Wang, 1995). In STEM, a fine electron
probe smaller than 0.5 nm in diameter is generated,
which can be used to probe the local inelastic excita-
tions. The effect produced by the finite size of the probe
will be compensated using a convolution technique, as
for incoherent scattering.

For high-energy electrons, the velocity of an electron
approaches the speed of light. For 100 keV electrons,
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v=0.53 c. It is necessary to consider retardation effects
in dielectric excitation theory. In this section, dielectric
response theory is described and the physical mechanism
of classical electron energy-loss theory is introduced.
The applications of this general theory will be shown in
Section 3. For a homogeneous medium and under the
local dielectric response condition, the electric field E (or
displacement vector D and magnetic field H (or B)
= upH for non-magnetic materials) which are excited in
the space are determined by the solution of Maxwell’s
equations

V x E(r, 1) = — gz N (2.6a)
V x H(r, 1) = J(r,1) + 8136(:, ) , (2.6b)
V-D(r, 1) = p(r, 1), (2.6¢)
and
V-B(r,1) =0, (2.6d)

where J is the current density of free charge and p is the
free charge density function. A transformation is
introduced which converts each time-dependent quan-
tity to a frequency-dependent quantity,

Ar,0) = f dt exp(ion)A(r, 1), (2.7a)
or
A(r, 1) = % f dw exp(—iw?)A(r, ). (2.7b)

The Maxwell’s equations are transformed into

V x E(r, 0) = ioB(r, ), (2.8a)
V x H(r,w) = J(r, w) — iwD(r, w), (2.8b)
V-D(r,w) = p(r,w), (2.8¢c)

and
V-B(r,0) =0. (2.8d)

These equations are coupled. The Hertz vector ﬂ
(Stratton, 1941) is now introduced, using which E and H
are expressed as

- el <=
E(r,w) =V[V- H(r, w)] + FH(r, ) (2.9a)

and
H(r,w) = —iwe(w)gV x H(r, w). (2.9b)

Substituting (2.9a) and (2.9b) into (2.8a) and (2.8b),

for D(r,w) = egE(r,w), the equation which determines
I1is

V2 + £—“’2-]1;[@ ©) = —
c? ’

where V2 =[ gz‘*‘g["l‘gj] is the Laplace operator.
Thus, Maxwell’s equations are reduced into a single
equation. eqn. (2.8d) is automatically satisfied with the
magnetic field given by eqn. (2.9b). We now prove that
egn. (2.8c) is also satisfied with the E and H given by
eqn. (2.9a) and eqn. (2.9b). From eqn. (2.8¢) and using

eqn. (2.92a) and eqn. (2.10)
p(r,w) =V -D(r,w) = e,V - E(r, w)

27 -
. o2, E@ V. J(r,0)
= g5V [V + = }H(l’, w) = —

(2.11a)

or equivalently

V.30 + apgt, J

This is just the law of charge conservation, which
holds under any circumstance. Therefore, the Hertz
vector covers all the characteristics of the electric and
magnetic fields.

When an incident electron strikes a dielectric medium,
electric and magnetic fields are generated not only by the
incident electron but also by the polarization charges in
the medium. In the classical electron energy-loss theory,
an incident electron is treated as a particle that moves
along a certain trajectory, provided the changes of
electron energy and momentum are small. For a high
energy electron, the electron trajectory is assumed to be
unaffected by the induced charges distributed in the
media. Its energy loss equals the work done by the
induced charges distributed in the bulk and at the
interface and surface to slow down the incident electron.
In STEM, the electron is assumed to travel at speed v
along the z axis, as shown in Fig. 2, thus the current
density for a moving electron is expressed as

I(r,1) = —ev 7 3(r —ro(2))
= —ev £ 6(x — x0)d(y)0(z — v1),

=0.

(2.11b)

(2.12)

where Z is the unit vector of the z-axis. The solution of []
is separated into two components,

[Ir.0) = [[.r0) + [ (r. )

f[e(r,a)) is due to the field generated by the moving
electron itself and is a special solution of eqn. (2.10);
[1i(r,) is the homogeneous solution of [V + %3 1T
wi(r,w)=0, which is due to the field produced by the
induced charges in the dielectric media and at the
surface, as schematically shown in Fig. 2.

The resultant solution [] (r,w) must satisfy the
following boundary conditions: continuity of the tan-
gential components of E(r,w) and H(r,w) parallel to the
surface/interface of the dielectric media at the boundary.

(2.13)
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Electron

ro(t)

Fig. 2. A schematic model showing the excitation of a dielectric
media system by a fast moving electron.

E and H are calculated from ]:[ using eqn. (2.9a) and
eqn. (2.9b).  These boundary conditions must be met in
frequency space, because the dielectric function is
frequency-dependent.

In classical physics, electron energy loss is a
continuous process, in which the electron is deceler-
ated due to the attractive force F,=(— e)E;, generated
by the induced charges. The energy loss per unit path
length is known as stopping power of the media. The
stopping power is an important quantity in scanning
electron microscopy and it determines the effective
penetration depth into the surface of the incident
electron (Joy et al., 1994). For a general case in which
the incident electron is moving along the z axis, if the
instantaneous position of the electron is denoted by
ro=(x9, 0, v#), where x is called the impact
parameter, the total energy loss of the incident
electron is calculated by

AE = me dz[—(—e) E,(r, 3] M

e [® *° .
=5 J_Oo dz j_w dw exp(—iwt) E,(r, w)|,,,

(2.14)

The central task for dielectric response theory is to
find the Hertz vector for relevant geometries and
impact positions. The total energy loss of the incident
electron is calculated according to eqn. (2.14). A
detailed application of this exact theory will be
demonstrated in Section 3.

C. Non-relativistic approximation

The solution of Maxwell’s equations could be quite
complex for some dielectric geometries. For lower speed
electrons, the non-relativistic approximation is usually
made, under which the solution is significantly simpli-
fied. This approximation is usually adopted to simplify
the analytical calculations. For ¢c—o0, eqn. (2.9a) and
eqn. (2.9b) become

E(r,0) = V[V - [[(r, )], (2.15a)
and
H(r, w) = —iwegV x H(r,w). (2.15b)
eqn. (2.10) is approximated as
V[ ](r, o) = iwtgo J(r, o). (2.16)
By defining an scalar electric potential
Vo) = v ][ o), (2.17)

using the charge conservation law, V-J((r,o) — iw
o(r,w) =0, applying an operation of V- to both sides of
eqn. (2.16), yields

ViV (r,0) = @ p(r, ), (2.18)
where p(r,w)= — £3(x—xy)3(y) exp(iwz/v). This is just
Poisson’s equation, the solution of which describes the
electric field distribution in space. Again, the solution
of V(r,w) is composed of a special solution V.(r,w)
and a homogeneous solution Vj(r,w). V(r,w) is due to
the field generated by the moving electron itself and
Vi(r,w) is the homogeneous solution of V?¥j(r,w)=0.
The boundary conditions for V(r,w) are: the con-
tinuity of WV(r,w) across the boundary, and the
continuity of the normal component of the displace-
ment vector across the boundary.

The magnetic field generated by the moving electron
will not reduce its speed but may slightly deflect it
because the Lorentz force is perpendicular to the
moving direction of the particle. This deflection is
small for high-energy electrons. Therefore, as far as
energy-loss is concerned, the electric potential ¥ is the
only required function. The electron energy loss is
produced by the potential of the induced charge:

AE:—J- dZJ

e
21 ) oo

dw exp(—iwz/v) [%(Vi(l', a)))]

(2.19)

—00 r=rp

Introducing the inverse Fourier transform of V;, eqn.
(2.19) can be rewritten as

e 00 o0
AE = —J dz J dw exp(—iwz/v)
) Joco

{% Uoo df exp(ia)t')Vi(r,l'O(t,)} }

—00

I=rg

e [® o .
=3 J_oo dw J_oo dz exp(—iwz/v)

J 47 explind /) [% Vi, ro)}

—00

r=rp
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% " do [ d explior
=5~ J_w dw J—oo dz’ exp(iowZ' /v)
J dz w exp(~iwz/v)Vi(r, 10)lyr,

00 0o
e
== do
ve Jo ~00

Jio dz o Im—explin(z’ — 2)/V|Vi(r,r)

dz

ll‘=ro ?
(2.20a)

since ¥; becomes 17;* if &(w) is replaced by &(— w). For a
finite system, an assumption of I7i(r,ro)=0 at z==o00
was made. This assumption may not hold if the
dielectric medium is infinitely large. Vi(r,ro) is the
potential due to the induced charge when a
‘stationary’ electron is located at ro=(xq, 0, 2'), i.e. it
is the homogeneous component of ¥ satisfying

e(w)ey

V2P(r,rp) = — o(r —rg)
for the dielectric media considered. It is important to
note that ¥i(r,ro) is w-dependent. The potential distribu-
tion in space is a quasi-electrostatic potential for each
point along the trajectory of the incident electron. The
integral over z' is a sum over the contributions made by
all the points along the trajectory of the incident
electron.

The total energy loss is related to the excitation
probability by

AE:J da)hwd—P(i).

0 = (2.20b)

The comparison of eqn. (2.20a) and eqn. (2.20b) gives

dP(w) e J'°° 47

do w2 )_

Joo dz Im—explio(Z’ — z) /v Vi(r, xo)

Il’:m
(2.21)

Therefore, the calculation of valence-loss spectra is
actually to find the solution of the electrostatic potential
for a stationary electron located at ry in the dielectric-
media system. For an isolated sphere, the ‘mirror’
charge technique can be used and in many complex
geometries an analytical solution could even be obtained
(Smythe, 1950). The result given by egn. (2.21) is
identical to that obtained based on the theory of self-
energy (Echenique et al., 1987a, 1990). Equation (2.21)
has been extensively used to calculate the valence-loss
spectra in isolated and supported particle geometries
(Rivacoba et al., 1994, 1995a). For fast electrons in
STEM, the trajectory is usually a straight line unless
specified for different scattering configurations, such as
in reflection electron microscopy at gracing angle
incidence (Wang, 1996) or at normal incidence
(Yubero and Tougaard, 1992).
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The electron inelastic mean free path A is calculated

according to
1 00
£,

A detailed calculation of A for free-electron metals
has been given by Ashley et al. (1979) and Tung ez al.
(1979). The valence-loss spectra of Si, Cu, Ag, Au, Ti,
Fe and Pd have been calculated by Tougaard and
Kraaer (1991).

d*p
Cdwdz

1. Resonance modes and dispersion relations

As shown above, the solution of Poisson’s equation is
required if one is interested in energy-loss spectra. In
most cases, the resonance frequencies and modes are the
interesting quantities. These are the resonance modes of
the dielectric system and are independent of the
excitation trajectory of the incident electron. In this
case, the solution of Laplace’s equation is required:

V2¥i(r) = 0. (2.22)

The dispersion relation is obtained by matching the
boundary conditions of Vj(r).

III. VALENCE-ELECTRON EXCITATION NEAR
PLANAR INTERFACES

A. Surface and interface plasmons

Dielectric response theory introduced in Section 2.3 is
now applied to calculate the electron energy-loss spectra
of surfaces (or interfaces). In a general case, an interface
is formed by two media with dielectric constants &;(w)
and &(w) (Fig. 3). The incident electron is assumed to
travel at a distance xp in medium ¢; parallel to the
interface. The interface is assumed to be infinitely long
in order to simplify mathematical operations. For
interface excitation as shown in Fig. 3, since the
energy-loss of the incident electron is independent of
the origin of the y-axis, another transform is introduced
(Garcia-Molina ez al., 1985):

H(r, ) =J.duy Jduz exp2ni(uyy + 1,2)] H(x, Uy, Uz, ©).
(3.1)
Substituting eqn. (3.1) into eqn. (2.10), one has

oo e

1
= I (x, uy, ttz, @
iweey ( A ),

(3.2a)

where

¥ (x, 1y, up, @) = —2mev 7 8(x — x0)8(2nvu, — w),
(3.2b)

and v’ = u§ + uﬁ. From symmetry, one may assume
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€]
Xq

Z=Vt .

Fig. 3. Model of dielectric response theory of interface

excitation for two homogeneous media. The incident electron

is traveling along the z axis at a distance xo from the
interface.

that J] has components only in the x and z axis
directions: [[=([]x, 0, [].)- The equation one needs to
solve (for the case in which the beam is in medium ¢,
is

[dxz ] H X, Uy, U, 0) =0, (3.3a)
[dxz X1:| H(x Uy, Uz, O
(3.3b)
27ev
= " ionien 0(x — x0)6(2nvu, — w),
- d2 - -
Fhe X H(x, Uy, Uz, @) =0, (3.3c)
o 4 X
and
r d2 2‘ +
2N H(x, Uy, Uy, ) =0, (3.3d)

where [T~ and []* represent the Hertz vectors for x <0
and x>0, respectively,

2 a4 2) - 1Y (3.42)
and
3= 4n2(u§ +ul) — 82;]2 . (3.4b)
The solutions of eqn. (3.3a—d) are written as
H(x Uy, Uz, @) = C exp(x,x), (3.5a)

L __mev
l:[(x, Uy, Uy, @) = ro—— (2mvu, — w)exp[—yx;|x — Xol]
+ A exp(—x%),

(3.5b)
H(xa Uy, Uz, (D) =D CXP(sz), (3-50)

X

and

+

H(x, Uy, Uy, @) = Fexp(—yx). (3.5d)

X

Both y; and x, are required to have a positive real
part in all subsequent manipulations, in order that the
expressions in eqn. (3.5a—d) converge at large x.

The four constants appearing in the solutions must be
evaluated from the continuity of the tangential compo-
nents of E and H parallel to the interface at the
boundary plane defined by x=0. According to eqn.
(2.92) and eqn. (2.9b) the corresponding boundary
conditions for the Hertz vectors at x=0 are

+ -

&1 H =g H, (3.6a)
+ d H+ - x—

2inu, H + dxx = 2inu, H + e (3.6b)

+ —_
€l H =g H, (3.6c)

X X

and
Il _, 4Tl

EIW = 82—-a-x——. (36d)

Only the coefficients A and F are required for the
following calculation,

X1 — X2
A === 3.7a
Xt (3.72)
and
. & — &
F = 4miu,x,( , 3.7b
a (X1 + 22) (X281 + 1182) (3.70)
where
ey
= 8(2nvu, — —x1%o)- .
¢ E (2mvi, — w)exp[—yx;xo] (3.7¢)

The retarding force at the electron in the (—2)
direction is equal to its energy loss per unit path length.,
From eqn. (2.14)
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dAE

dz

= ;J dw exp(—iw?) Jduy JduZ exp[2niu,vi|

{ 27iu, l2muz (%, 1y, uz, )
d +
+a;1:1(x, Uy, Uz, @)
+
H X, Uy, Uy, @

x=Xxg

(3.8)

Also, the energy loss per unit path length is related to
the differential excitation probability of valence electron
excitations by

d*p
dw A .
o M q0dz

dz

dAE J°° (39)

Substituting the solutions given by eqn. (3.5a—d) into
eqn. (3.8), using a relation of &(—w,u) = e*(w,u), one
has

2(e2 — e1)1y

oscillatory function rather than an exponentially
decaying one, provided energy loss Awm#0. Then,
transition radiation and Cerenkov radiation can occur
(Kroger, 1970). The plasmons which correspond to
transition radiation are referred to as radiative plas-
mons; other plasmons are called non-radiative plas-
mons. This paper concerns the non-radiative plasmons.

2. Non-relativistic results

For the non-relativistic limit case c¢—o0o,
1 =13 =4n%2 +(w/v)’, and the classical excitation
probability becomes

a?p & J"Od md 2= %
dwdz — 2r2hv2e |, " e1(e1 + &)

1 3.12
exp(~2fir’s + (o] ) - -} 1
[ + (w/2mv)"] 2.
The radiation disappears. If ¢ is independent of ¢,

d’p e

dodz  nhiviey Jy &1(x1 + x2) (X281 + 1182)

=0/l -1
exi (0 +x2)

- (v/c)zsll}

)} exp(~2z, )

&1 X1
(3.10a)
where
2
7= 4 + (@/v) - -, (3.100)
and
2
1 = dnil + (0/v)? - f%c‘f— (3.10c)

Equation (3.10a) contains the electron energy loss due
to excitation of the dielectric media and to the
generation of electromagnetic radiation. The integral
of u, is a sum over the contributions made by the
electrons transferring momenta in different directions.
In practice, the upper limit of the integral is g., the cut-
off wave vector for plasmon excitation (Raether, 1980).

1. Transition radiation

The condition for producing electromagnetic radia-
tion is examined as below. In eqn. (3.10b), if & (v/c)*>1
for some particular frequencies, x; can be rewritten as

1/2

(/)]

Thus, ; can be imaginary if |u,|<;%[e,
eqn. (3.10a),

X1 =4752”2——“[81 (3.11)

— (/W In
the exp(—2yiixp|) term becomes an

1
dodz ~ 2n2ehv? {Im{— a}ln(ancv/m)

&+ &
+ Im{ ————— 3 Ko (2awxg /v
{61(81+82)} o o/v)

e?

1
= 2megh? {Im{— ;} {In(2ng.v/w) — Ko (2wx0/v)}
2
Im{ —
* m{ g +e

where Kj is the zeroth order modified Bessel function.
The first term is the volume plasmon and the second
term is the interface excitation. The interface plasmon
frequency is determined by &; +¢,=0.

In comparison with the result of relativistic theory,
the non-relativistic theory ignores the retardation effect
and Cerenkov radiation, which occurs when er(v/c)ZZI.
When passing close by a dielectric medium, a charged
particle suffers both surface—plasmon excitation and
Cerenkov radiation. Figure 4 shows the ratio between
the non-retarded and the retarded excitation probabil-
ities for a 100 keV electron beam interacting externally
with a MgO cube at different impact parameters with
respect to its surface (Garcia-Molina et al., 1985). It is
seen that the retarded probability is always larger than
the non-retarded prediction, except for beams close to
the surface. This is because the classical expression
neglects retardation effects, and these will be appreciable
at large beam—surface distances.

The classical electron energy-loss theory is based on
the particle properties of the incident electron. Strictly
speaking, eqn. (3.10a) can only be applied to calculate
valence-loss spectra acquired using a very fine electron
probe. For an electron probe of finite size, the theory
needs to be modified to convolute (®) with the shape

2}Ko(2a)x0/v)},
(3.13a)
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Fig. 4. Ratio between the excitation probability for a relativistic

beam and a non-relativistic beam, traveling externally parallel

to a MgO flat surface. The distances from the surface to the

beam are A: xp=10 nm; B: xo=4 nm and C: xo=0.5 nm. Beam
energy 100 keV.

function I(b) of the electron probe (Ritchie and Howie,
1988). The scattering intensity observed for electron
impact position by, is

dPobs (by) _ "(;’HE ) - I(b,) ® dl;(;"’) Jdb I(b—b,) dgg’)
(3.13b)

where b=(x,y). Equation (3.13b) means that the
observed spectrum is an incoherent summation over
the spectra calculated for different impact parameters of
the incident electrons, weighted by the intensity dis-
tribution function of the electron probe. This is the
result of incoherent scattering theory.

It is also important to note that the above theory is
developed for high-energy electrons. For electrons of
incident energy less than about 2 keV, the theoretical
model breaks down (Tougaard and Kraaer, 1991).

B. Volume plasmons in bulk materials

The result obtained in Section 3.1 can be applied to
calculate volume—plasmon excitation in a bulk material
where &1 =g =¢. From eqn. (3.10a)

d’pP e [® [1 - (v/c)’]
dwdz — mhviey L duy Im— cw?] /2
€ [41r2u2 + (@/v)* - T}

(3.14)

For convenience in the following discussion, the
imaginary component of the dielectric function in the
term 53’25 is ignored so that % = “2’2. Thus, eqn. (3.14) is
approximated as
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d&p & r e 1
dodz " whviey )y Y i
2.2 2 &
dntus + (w/v)" - 2
2
+Im (v/) 7
o o -]

(3.15)

The second term is zero unless |u,|<;2]e, — (c/v)?'2,
which requires &>(c/v)?, the condition for Cerenkov
radiation. Thus, part of the electron energy loss is due to
Cerenkov radiation. Cerenkov radiation occurs even
when the imaginary component &=0. The scattering
angle which corresponds to the maximum intensity of
Cerenkov radiation occurs at

w

[u)']max - %[ET - (c/v)2]1/2.

Under the non-relativistic approximation, eqn. (3.14)
is approximated as

(3.16)

VO P -
dodz — mhvieo Jo 7 [an2u + (w/v))]" g
——52— m 1 [l + 2rucy/w)?]
T An2eghv? £ e ’
(3.17)

where Im{ 1} 7:7 is known as the energy-loss
function for volume excitation.

1. Free-electron-gas model

The characteristic shape of valence-loss spectra can be
illustrated using the quasi-free-electron model. In an
electron gas with electron density n, the dielectric
response function is given by eqn. (3.18) if the
dissipative effects are considered:

2

Bw)=1——P ___ (3.18)
o(w +i/1)
with
2 w2
a(w)=1- anl/v:_i and & () = cm(coz—ilj 1/72)’
(3.19)

where 7 is the relaxation time, w, the frequency of the
bulk -pla§mon, and cufJ = f({im Thus the energy-loss
function is

Im{—l} =
& ((D2 —
Figure 5 shows a schematic plot of &(w), &(w) and

Im{—1}. The volume plasmon loss corresponds to a
sharp peak centered at w=w,. The full-width at half-

wiw/t

co%)2 + /e

(3.20)
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Fig. 5. (a) Plot of real and imaginary components of the
dielectric function for Al based on the quasi-free-electron gas
model. (b) The calculated volume plasmon energy-loss function.

maximum (FWHM) of the plasmon peak is 1/z.
Aluminum is a typical example of the free-electron case
with o, =15 eV, A/r=0.5 eV and [Im(—1/&)]max = 30.
The volume plasmon energies for conventional metals
have been tabulated by Egerton (1986) and Raether
(1980). Fig. 5 shows the calculated dielectric functions
and the corresponding energy-loss function of Al, based
on the quasi-free-electron gas model. The volume
plasmon is represented by a sharp peak.

Figure 6 shows EELS spectra acquired from Al and
TiH specimens. The volume plasmons of Al and TiH are

L L 1 ! 1 1

T L L
60} ]
501

40}

CCD counts x 1000

A | - Y I " 1 " | I
-0 10 20 30 40 50 60
Energy Loss (eV)

Fig. 6. Plasmon-loss spectra acquired from thin foil Al and TiH,

respectively, showing the dependence of the volume plasmon

frequency on the density of the valence electrons in the solid.

The Ti-M; 3 edge is due to the excitation of 3p electrons of Ti.
Beam energy 300 keV.

located at 15 and 21 eV, respectively. The difference in
volume plasmon energies is due mainly to the difference
in valence electron density. The TiH plasmon has at
higher energy because of the higher density of valence
electrons in TiH. The FWHMs of the two peaks are
different, indicating the difference in decay time. The Al
plasmon peak is significantly lower and sharper than the
TiH plasmon peak. In comparison to the calculated
peak shown in Fig. 5b, the width of the Al peak is
broadened by the energy spread of the electron source,
which is 1.5eV for this case. The dependence of
plasmon energy on the density of free electrons has
been used to quantitatively map Li distribution in an
Al-Li alloy (Hunt, 1991).

In an assembly involving quasi-free-electrons of
density n¢ and bound electrons of density #;, with an
eigenfrequency w,, the dielectric function is written as

npe? 1
gom @l —w?+ioft
(3.21)

2. Kramers—Kronig transformation and measurement of
dielectric function

From the valence-loss spectra, the energy-loss func-
tion Im[—1/¢] can be directly obtained if the multiple
plasmon scattering effects are eliminated. This informa-
tion allows a calculation of the real part Re[—1/e]
according to the Kramers—Kronig relation (Johnson,
1975; Colliex, 1984)

1 2 [, 1 o'
R"{s(w,q)} =1- EPPL do Im{‘s(wm}aﬂ — ot
(3.22a)

where PP represents the principal part of the integral.
The measured diclectric function is normalized ac-
cording to the Kramers-Kronig (K-K) sum rule
(Egerton, 1986):

- Re{é(Tl’(ﬁ} - -%f do Im{s(qu-)}% (3.22b)

g and ¢ can be calculated from Re[—1/e(w)] and
Im[—1/e(w)]

_ Re(1/e)
* = Re(U/a)] + Im(1/e)7 (3:220)
and
&= Im(1/¢) (3.22d)

 [Re(1/e) + Im(1/e)

The K-K transformation is a powerful technique
which can be applied to determine the dielectric
response function from an energy-loss spectrum ac-
quired from a region smaller than a few nm in TEM and
STEM. This is a unique advantage, particularly in the
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cases where chemical non-stoichiometry is significant. It
must be pointed out that the K-K transform holds only
for isotropic materials. The K-K transform has been
applied to determine the dielectric response functions of
a high temperature superconductor (Wang et al., 1991,
1993a,b,c; Lin et al., 1993; Wang and Ritter, 1991). The
fine peaks observed in the low-loss region reveal
transitions from the valence states and the integrated
intensity of the peak is approximately related to the
occupation number of valence electrons in the state,
which can be applied to determine the location of the
excitation in crystal lattices, provided a standard
spectrum from a specimen with known excitation is
available. This study can reveal the structure of valence
bands. The perovskite-like structures of functional
materials usually exhibit anisotropic dielectric proper-
ties, and EELS is ideally suited for this orientation-
dependent dielectric function measurement (Wang et al.,
1993b; Zhang et al., 1993). Factors which may affect the
measurement of the dielectric function of a thin
specimen using EELS have been outlined by Yuan
(1989). The K-K transformation has been applied to
measure the dielectric function of carbon nanotubes
(Kuzuo et al., 1992), but no correction was made for the
geometry of the carbon tube, which, as will be shown in
Section VIII, affects the spectrum shape. For small
particles, the spectrum shape is dominated by surface
excitation, thus a large error could be introduced if
either the medium configuration or the excitation
condition (such as the impact parameter/position) is
ignored. The most reliable condition for measurement of
dielectric function is using homogeneous thin foils.

Two more sum rules also apply to the dielectric
function (Egerton, 1986):

J do o Im[-1/&(w)] = gwg; (3.23a)
and
jdw oIm{-2/[l +e@)]} =F0f.  (323b)

3. Momentum-resolved EELS

An alternative derivation of eqn. (3.17) was given
from the Fourier transform of Poisson’s equation
(Ritchie, 1957); the differential probability of an electron
inelastically scattered to momentum #q [see eqn. (12.23)
in a later section] in an infinite large isotromic medium
characterized by a q-dependent dielectric function &(w,q)
is

L 1 ]
dwdzdq  2n%heoV? [2 + (w/v)?] &(w,q) )’
(3.24a)

which can be expressed as a function of the scattering
angle defined by ¢g= K and Og(w) =2,
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d’p e 6 1
- S 24b
dwdzdd ~ 2n2heqy? [0 + 62] Im{ e(w,q)}’ (3240)

where K is the wave vector of the incident electron. eqn.
(3.24b) clearly indicates that energy-loss spectra ac-
quired at different scattering angles can be applied to
calculate the momentum-dependent energy-loss function
Im -m . This experiment can be conducted by
positioning the entrance aperture of the EELS spectro-
meter at different scattering angles with respect to the
central transmitted beam, provided the size of the
aperture is sufficiently small that it allows the mo-
mentum-resolved information be retrieved (Batson and
Silcox, 1983). This is the so-called momentum-resolved
(or angular-resolved) EELS. If the semi-collection angle
of the spectrometer is much larger than the inelastic
characteristic angle g, the momentum transfer 7q is
approximately confined in a plane perpendicular to the
incident beam. If the incident beam directionisalong the ¢
axis of the crystal, q would be parallel to the a—b plane. By
varying the crystal orientation with respect to the incident
beam direction, the momentum-resolved EELS allows
measurement of the dispersive dielectric function &(w,q)
(Zhang et al., 1993; Wang et al., 1993a) because the K-K
transform holds for a q-dependent &(w,q) (Mahan, 1990).

C. Surface excitation of thin foils in TEM

For the excitation of thin foils, only the excitation of
the surface (interface) that is parallel to the incident
beam was considered. For thin films in the transmission
electron case, the excitation of the top and bottom
surfaces also contribute to the valence spectra, parti-
cular when the specimen is thin. For a simple case of a
thin slab of thickness d, and dielectric function ¢ with
the incident beam perpendicular to the slab surface, the
valence electron excitation probability is given by
(Ritchie, 1957)

1-c¢

dP(x) € e

Tdo  2neoh? Jo du @+ @/ Im{

2(e — 1)cos(wdo/v) + (e — 1)2exp(—udp) + (1 — &2)exp(udo
(e — 1)’exp(—udp) — (2 + 1) exp(udp)

L f"‘“d"*—“—lm !
2n2hegy? )y 12 + (w/v) e’
(3.25)

where the first term corresponds to surface excitation and
the second term to volume excitation. An extensive
theory which includes spatial dispersion has been given
by Gumbs and Horing (1991). In a general case, the
direction of the incident electron may not be perpendi-
cular to the foil surface. For oblique incidence, the
valence electron excitation probability has been given by
several authors (Otto, 1967; Kroger, 1970; Geiger, 1967).

From eqn. (3.25), the resonance frequencies for surface
excitations are determined by
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e—1 a b
== dp).
f L = texp(udy) S/
For free-electron metals, the dispersion relationships do

of the surface excitation are given by

2
ol = —22 [1 + exp(—ud)]. (3.27)

If the specimen is sufficiently thick so that the
coupling between the top and bottom surfaces is weak,
eqn. (3.25) is approximated as

dP(x) € Jz"qc d 7 mdl_ 4
do ~ 2n2geh? |, 9 (72 + (w/v)*]? e e+1
ed, Jz’“’c d u { 1}
3 TFe 2 U —————ImJ —-
2n2hegvt Jo u? + (0/v) €

o arctg(2ng.v/w)Im I 4
= 4n2eghv? BlLEmgey e e+1

+In(1 + (ancv/a))z)lm{- %H )
(3.28)

which contains the contributions made by both the
surface and volume plasmons. Figure 7 shows plots of
the theoretical volume and surface energy-loss functions
of Fe. The surface-loss peak is located at lower energies.
The experimentally observed spectrum is a superposi-
tion of the surface-loss and the volume-loss. For thin
films of known thickness, the surface-plasmon spectrum,
although small, can be separated from the volume
plasmon spectrum using a method introduced by Evans
and Wang (1992).

Plasmon loss represents charge oscillation in a thin
film. Polarization fields are excited in the medium when
the charged particle approaches it. For a thin slab, two
characteristic plasmon modes are excited: w, ~wp / V2
for udy> > 1 and wy, ~wp+/udy / V2 for udy < 1. Figure 8
represents schematically the a and b modes of surface
polarization electric fields within a thin slab. Mode a is
strongly associated with the charge oscillation at each
surface. Mode b is largely determined by the coupling
between the top and bottom surfaces. The excitation
probability of mode b is determined by the thickness of

1.2 R
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Im(-1/€)
08 -1
r 5
0.4 Im{-1/(E«1)] -
- 1
0 . 1 1
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hw(eV)

Fig. 7. Plot of volume and surface plasmon loss functions of Fe.

) |

Fig. 8. A physical representation of the surface polarization
electric fields within a thin free-electron slab for the two
plasmon modes.

the foil. For thick foils and udy> >1, mode a is
dominant; for thin foils and wudy<1, mode b is
dominant.

D. Surface excitation in reflection electron microscopy
and STEM

To illustrate the application of eqn. (3.13a), a simple
case shown in Fig. 3 is considered. If the electron is
moving in vacuum parallel to the surface, i.e. &, =1 and
g=¢, eqn. (3.13a) reduces to

d?P(xp) e? {

= I —
dzdew  2n2ephiv? m

i 1 }Kg(wao/v). (3.29)

Im{—2/¢+ 1} is called the surface energy-loss func-
tion. No volume plasmon would be excited in this case.
Valence-electron excitation is an unlocalized scattering
process, which occurs even when the electron is a few nm
away from the surface in vacuum. If the electron
penetrates into the crystal, i.e. ;=1 and & =¢, eqn.
(3.13a) reduces to (Howie, 1983, 1988; Howie and
Milne, 1984):

dZP(XO) e2 1
= I _ 1
dzdw 27[280hv2 { m( 8) [ n(znqcv/w)

— Ko(2wxo/¥)] + Im{~8—_f2_—l}Ko(2wxo/v)
(3.30)

The Im(—1) term describes the excitation of the
volume plasmon and depends on the distance of the
electron from the surface; the second term characterizes
the excitation of the surface plasmon. The decrease of
the volume excitation as the electron approaches the
surface compensates the increase of the surface excita-
tion. The excitation probability of the volume plasmon
drops to zero at x,=0.

From eqn. (3.30), the volume plasmon and surface
plasmon of metals can be given below. For simplicity,
one uses the free-electron model. The resonance excita-
tion of the volume occurs at g(w)=0, thus, w, is the
volume plasmon frequency. The surface resonance
excitation occurs at &(w)+1=0, thus w,=w,/v2.

1. Effect of dielectric spatial dispersion

In eqn. (3.30), the Bessel function Ky(2wxp/v) tends to
infinity at xo=0. This non-physical result was artificially
introduced from two sources. One source is the
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assumption of &(w) being independent of ¢, i.e. no
dispersion (Zabala and Echenique, 1990). The other
source is the unlimited momentum transfer. For
valence-electron excitation, there is a cut-off at ¢g=g¢,
so the upper limit of «, integration in eqn. (3.15) should
be replaced by g..

The dispersion of the dielectric function has enormous
effect on the image potential experienced by a point
charge as it approaches the surface. Figure 9 shows a
comparison of the image potential at a metal surface
calculated with and without consideration of the
dielectric dispersion (Echenique et afl., 1981). The
difference in the results increases as the impact
parameter from the surface decreases. The divergence
of the potential at the surface disappears when the
dispersion of the dielectric furiction is included. Also,
the potential at the surface is substantially low, in
correspondence to the practical situation. The inclusion
of dispersion is essential in determination of the angular
dependence of electron energy-loss spectra (Barrachina
and Gras-Marti, 1992).

Figure 10 shows the calculated differential excitation
probabilities per unit distance for an electron traveling
parallel with a GaAs(110) surface. The dashed and solid
lines represent the excitation probabilities of the volume
and surface plasmons inside the crystal, respectively.
The dotted line is the total probability of the plasmon
excitations (surface and volume). The excitation prob-
abilities of the surface and volume plasmons sensitively
depend on the impact parameter of the electron from the
surface, but the total excitation probability is almost a
constant (for x<0). The excitation of the volume
plasmon occurs only when the electron penetrates deep
into the crystal. The excitation of the surface plasmon
happens in a region about 1.5 nm from the surface. Only
the surface plasmon is excited if the electron is outside of
the crystal. The electron—surface interaction is a long
range Coulomb interaction.
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Fig. 9. Variation of the image potential experienced by a point

charge when it penetrate from the vacuum (x> 0) into the metal

(x <0). The solid and dashed lines are the calculations with and

without including dispersion. The unphysical divergence of the

potential at the surface is absent when the dispersion relation is
included. 1 atomic unit=0.053 nm.
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Fig. 10. Calculated excitation probability per unit distance
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2. Quantifying surface excitation spectra

The fine electron probe in STEM is ideally suited for
observation of surface excitation. For cubic MgO
crystals, for example, the electron probe can be directly
positioned on an MgO crystal, at the surface and outside
the surface (Cowley, 1982). Thus, the electron energy-
loss spectra can be acquired as a function of the electron
impact parameter (Batson, 1983). Figure 11a and Fig.
11b show the calculated valence-loss spectra (dashed
lines) and the experimentally observed spectra (solid
lines) of an MgO cube. The spectra were calculated
using dielectric response theory as outlined in Section
3.1. The volume excitation is dominant if the electron
probe directly penetrates the cube (Fig. 11a). The
dielectric function of MgO is retrieved from the volume
excitation data according to the K-K transform; the
results were applied to calculate the spectrum shape
when the electron probe is outside the MgO cube, in
which only the surface excitation occurs (Fig. 11b). The
calculated spectra not only show the major features of
the spectra but also exhibit the same absolute scattering
probability in reference to the observed data (Walls and
Howie, 1989). This is a direct proof of the success of
dielectric response theory for valence electron excita-
tions.

In reflection electron microscopy (REM) (Wang,
1993, 1996), the simplest scattering geometry is the
mirror-reflection model in which the electron is reflected
from the surface without any penetration, thus there is
no diffraction effect. This is similar to the reflection of
light from a planar mirror surface. Equation (3.29) and
eqn. (3.30) can be applied to simulate EELS spectra
acquired in REM geometry by modifying the scattering
trajectory of the electron as a staircase (Fig. 12), the
distance of the electrons from the surface is represented
by a mean value for each step, which is approximately
valid if the step size is chosen to be small. The path
length of the electron within each segment is Ax/sinf.
This has been demonstrated as an effective experimental
method for measuring electron penetration depth into
the surface (Wang, 1993).

According to eqn. (3.30), only surface excitations
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Fig. 11. (a) Volume and (b) surface excitation spectra acquired at 100 kV from a MgO cube of thickness about 120 nm. The dashed
lines are the simulated spectra based on dielectric response theory presented in Section 3.1 (Walls and Howie, 1989).

occur in REM geometry when the electron is traveling in
vacuum. In the mirror reflection model, surface excita-
tion occurs when the electron approaches and leaves the
surface. The probability of excitations in this scattering
geometry is calculated as

a5 2150
0= <], sinfJ, dzdw

dwllm{ —2 }
w e+1

(3.31)

e2 00
" 4me,h sind L

E. Transverse force on a moving electron

The theories presented in Section 2.2 assume that the
incident electron trajectory is unaffected by the energy-
loss. In addition to the reduction of the electron velocity
due to energy loss, the induced charges attract the
electron towards the interface, resulting in a deflection
of the incident beam direction. In this section, the

Fig. 12. Stair-type electron traveling trajectory for simulating

EELS spectra acquired in RHEED geometry. The dashed line

indicates the approximated electron trajectory for theoretical

calculations. The electron is consider to travel parallel to the
surface within each stair step.

transverse force F,, perpendicular to the direction of
electron travel, is calculated for the dielectric configura-
tion shown in Fig. 3. The transverse force is produced by
the electric field E, of the induced charges; from eqn.

(2.9a):

Fy = (=€) Eix(t, )| imro(y
-5/
= ——2%[; dw exp(—iwz/v) [56; (V : H:—(r, (0))

81(02 “r+
C2 ix

dw exp(—iwz/v) Ex(r, ©)| =,

(€, @)l r=ry

2n

=- ij dow exp(—iwz/v) Jduy Jduz exp[2miu,z]

2 +

d d
X {27rzuzal;[(x, Uy, Uy, ) +@l;‘[(x, Uy, Uy, ©)

2 _t+
&1
—a X, Uy, Uz, O
+ 2 H( Uy, Uy )}

iz

ez 00 00
= —ML da)L duyRe{ [ A2 — N1

4 Her = 81) (475G + (@/9))] exp(-2p b)) |
X261 + X182 e1(x +x2)

X=X0

(3.32)

Taking limit ¢—o0, corresponding to a non-relati-
vistic electron,

(62 —&1)

Fe=- ir doo r d"yRe{s, (&1 + 82)} (3.33)

TvEp Jo 0
exp[~2(4n%22 + (w/v)")'|xo]].

Thus, F, <0 and the electron is attracted towards the
interface (Echenique and Howie, 1985; Marks, 1982), as
observed experimentally (Cowley and Wang, 1986).
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IV. VALENCE-LOSS SPECTRA OF LAYERED
MATERIALS

Multilayered materials are composed of layers of
different compounds. The thickness of each layer can
be made so small that the one-dimensional quantum
effect is expected. This type of material exhibits
unique properties and has potential applications in
advanced technologies. The plasmon oscillations in
these materials are strongly affected by the coupling
between interfaces. Figure 13 shows valence-loss
spectra acquired from an Al foil coated with Al,O;
of different thicknesses (Raether, 1967). For an
extremely thin coating case (spectrum 1), the surface
plasmon is located at an energy approximately
determined by cop/\/i, the surface plasmon of a
clean Al surface. With the increase in thickness of the
Aly,O3 coating, the surface plasmon energy decreases
significantly because the excitation of the Al-ALO;
interface becomes dominant. This is an example of
the sensitivity of the plasmon-oscillation frequency to
the dielectric configuration of the media.

There are two methods used to examine the
characteristics of valence-electron excitation in layered
materials: the incident beam is either perpendicular to
or parallel to the layers, as shown in Fig. 14. In this
section, a simple case is considered: two media (of
dielectric functions ¢ and ¢”) with a sandwich layer
(dielectric function &) of thickness 24 between them,
as shown in Fig. 14a. The excitation probability of
the valence electrons is given by eqn. (4.1a) if the
electron is located at a distance x (x>#h) from the
center of the sandwich layer in medium ¢” and

——

‘/r}}i\ v

) / \\ AN

N_/ )

Jl y JS 3
\j//m;ﬁ

AE (V) 15 10 5 06

Fig. 13. EELS spectra from an Al foil coated with ALO; of
different thicknesses.
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(a)

Electron beam

Fig. 14. (a) Excitation of a ‘sandwich’ layer by an electron beam

which is traveling parallel to the interface. (b) Excitation of a

multilayered material when the incident electron direction is
perpendicular to the layers.

moving parallel to the interface (Howie and Milne,
1985).

2 2 2nqs
ddig) - 2n220hv2 Jo dqyé {Im (_ &)
+ F(e,¢,¢", q,h)exp[—2q|x — a|]},
where ¢* =g +w*/v’, and
F=

Im { [(¢' +&)(¢' — &")exp(2gh) — (¢ — &) (€' + ¢")exp(—2gh)] }
e'[(¢ +e)(e' + ¢")exp(2gh) — (¢ — &)(¢' — &”)exp(—2gh)] |
(4.1b)

(4.1a)

These equations are useful for simulating the EELS
spectra acquired in REM geometry from a surface if
there is a thin layer of another phase (Wang, 1991).

In the case where the incident electron is moving
perpendicular to the interface, as shown in Fig. 14b, Bah
et al. (1992) and Richter and Geiger (1981) have given
comprehensive reviews of dielectric response theory in
the layered materials. The anisotropy property of the
dielectric medium was also considered. For layered
metal films, Economou (1969) and Bolton and Chen
(1995) gave a detailed description about the dispersion
relations of the system.
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V. VALENCE-LOSS SPECTRA OF SPHERICAL
PARTICLES

A. Single-particle or cavity model

The theoretical scheme used to solve Maxwell’s
equations for the electromagnetic fields in the spherical
geometry was described in detail by Stratton (1941) and
Born and Wolf (1980). The solutions are too lengthy
and complex to be presented here. For simplicity, one
makes the non-relativistic approximation, under which
the surface excitation of a sphere embedded in a large
medium can be solved exactly (Ferrell er al, 1987,
Ferrell and Echenique, 1985; Echenique et al., 1987b). A
quantum mechanical treatment of plasmon excitation in
a metal sphere has been given by Schmeits (1981) and
Ashley and Ferrell (1976).

Consider a point electron moving at a constant
velocity v in medium ¢, along a trajectory specified by
ro(?) =(x0,0,v?), as schematically shown in Fig. 15. If
v<c, the potential generated by this moving charge is
the solution of Poisson’s equation. In terms of spherical
coordinates (r,0,4), one has ro=(x2 +v?£2)"/? and cos
6= vt/ro. The potential due to the incident electron in
free-space for ro>r is

e
B 4ngolr — ro(2))

- 47’[807‘02 Z

L=0 m=0
Nim(r/70)" PLn(c080) Prim (cosg)cos(me),
(5.1a)

Ve(r, f)

where Py, is the associated Legendre function. Also,

(2 — Som)(L —m)!

NLm— (L+m) 3

(5.1b)

where g, is unity if m=0 and is zero otherwise. If
r>ry, then r and ry are exchanged in eqn. (5.1a). If

€1

/XO

Xy

Fig. 15. A schematic model showing the excitation of a sphere
embedded in a large medium by an external electron beam.

Z. L. Wang

one uses spatially local, frequency-dependent, com-
plex, dielectric functions to characterize the response
of the media, it is necessary to introduce the Fourier
transform to match boundary conditions. Consider a
sphere of radius a<x, centered at the origin and
having complex dielectric function &. If V(r,w) is the
Fourier transform of V,(r,) due to the incident
electron, then the potential outside the sphere has
Fourier transform

Vout(ru (D) = _Vi'g’_w
00 L
+ Z ZALm(z ~ Som)(a/r)"*! Pm(cos)cos(me),
L=0 m=0
(52)

and inside the sphere the Fourier transform of the
potential is

oo L

ZZBLm (2 — 84 (r/@)" P (cosB)cos(me).

L=0m=0

Vin(r,w) =

(53)

Frequency-dependent coefficients Ay, and Br,, are
determined by matching the solution at the
boundary r=a. The homogencous potential outside
the sphere is responsible for producing the energy
loss, which is

v (r o) =

Nima®[aL(w) + v ()]

(a/r)"! P (cosO)cos(me) Im (e, xo),

(5.4a)
where
Lex(w) + (L4 1)e(w) — (2L+1)
=T w e ey 0 O
yL(w) = [—1 +6_1T160—)J’ (5.4c)

I, is given by

00
Iim(w, x0) = J dt rE(L“)PLm(cos90)exp(iwt)

—00

where K, is the modified Bessel function of order m.
The yi(w) term characterizes reduction of the volume
plasmon due to the presence of the surface plasmon,
which is neglected henceforth as far as surface-plasmon
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excitation is concerned. The electron energy loss due to
surface-plasmon excitation is calculated by

dAE 9 i
T e Pl D

dz
8ne0 £ £ (5.5)

a2+l
dw exp(—iwz/v)ar (o)

.

(L +1- m)NLmILm(aJ, X())PL+1,m(COS 0)

rL+2

If one performs the integral over z, the total energy
loss of the electron due to surface excitation is

j:° do[Kom (@x0/ )] (wa/ v Tl (@),

(5.6a)
where
_ (2 _ 50m)
Min = 25T + ) (5.6)
The differential excitation probability is
dP  fa & &
do ”zsohv§,§) (5.6¢)
MK (0x0/9)]*(wa/v)*  Tmiay ().
Two special cases are now considered.
1. Isolated metal particle
For a freely suspended sphere in vacuum
2L+1
=-Im|—1. 5.7
Ima ()] m [Lsz(m) +L+ l} (5.7)

The resonance frequency of the surface plasmon of
mode L occurs at

Ley(@) + L+1=0. (5.8)

For free-clectron metals

[ L
Ws = Wp im, L= 1,2...

L is a positive integer which characterizes the mode of
plasmon oscillation in the sphere. ws=wp/\/§, for L=1
and o, ~w,/v2 for large L.

To illustrate the meaning of the angular momentum
number L, one uses the calculated results of Stratton
(1941). For simplicity a free-clectron metal particle is
considered. The charge wave can be excited to oscillate
at particular frequencies. Figure 16 shows the electric
and magnetic lines of force for the first four modes of
the electric type. L=1 and L=2 are the dipole and
quadruple oscillations, respectively. L=3 and high Ls

(5.9)
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Electric lines of force Magnetic lines of force

L=4

Fig. 16. Schematic lines of force corresponding to the first four
modes of electric type in a spherical metal particle.

are the multiple plasmon oscillations. These resonance
modes are likely to be excited by the impact of the
incident electron, but the spectra are generally domi-
nated by the contributions from the first three modes.

The surface plasmon associated with a spherical
particle has been observed experimentally. Figure 17
shows an EELS spectrum of an Al particle, acquired
from the transmitted electrons. Besides the volume
plasmon appearing at 15eV, the surface plasmon
located at 9 eV is seen; w,=8.66 ¢V for L=1, and
ws=10.6 eV for L=c0. The plasmon peaks produced by
different modes are indistinguishable because of the
widths of the plasmon peaks.

2. Single spherical cavity

For a spherical cavity embedded in an infinitely large
dielectric medium (Natta, 1969)

2L +1
Im[oy (w)] = —Im [L Ta@) LT 1)} .

The resonance frequency of the surface plasmon of
mode L occurs at

(5.10)
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Fig. 17. EELS spectrum of an aluminum spherical particle

showing surface plasmon and volume plasmon peaks at 9 and
15 eV, respectively. Beam energy 120 kV.

L+g(w)(L+1)=0. 0

For a bubble in a free-electron metal, the surface
plasmon frequencies are

L+1
PO\

(5.12)

B. Particles with surface oxidation

In practice, metal particles are usually covered by a
thin layer of oxide or adsorbates. For aluminum, the
oxide layer is usually unavoidable. The excitation of a
dielectric sphere covered by a uniform layer of dielectric
function &3 can be treated using the procedures given for
the spherical particle case (Ferrell e al., 1987). For the
dielectric media shown in Fig. 18, the resonance
frequencies of surface plasmons are determined by
(Ferrell et al., 1987)

(@ + 2 (e (@)L + 1)/ + 2]
8L

+e(w)[L/(L+ 1)+ gL} + &1(w)ex(w) =0,
(5.13)

where gL =(a/R)***!, a and R are the inner and outer

€

a

Fig. 18. An isolated spherical particle coated with a dielectric
shell.

Z. L. Wang

radii of the surface layer, respectively. The surface- and
interface-plasmon excitations in a particle coated with
double spherical layers have been given by Ugarte et al.
(1992).

When a particle is coated with a thin layer of oxide, it
may be difficult, particularly when the layer thickness is
small, to directly image the layer using conventional
imaging techniques. However, the existence of a thin
layer on the particle surface can dramatically change the
excitation probability of the plasmon peaks. In this case,
an energy-filtered electron image can be very useful.
Figure 19¢ shows a set of energy-filtered electron images
of a Si particle coated with SiO, (Ugarte et al., 1992).
Four characteristics plasmon peaks, located at 3.5, 8.5,
17 and 23.5eV, were observed. The 3.5 and 8.5 ¢V
peaks are the surface/interface plasmons, 17 eV the
volume plasmon of Si and 23.5 eV the volume excitation
of Si0,. The energy-filtered image is a map of the
excitation probability across the particle for the
corresponding plasmon peak, provided a point electron

Theoretical
-35ey -©-85eV —17eV 23.5eV
Interface External
a P)] S“S'Oz\‘ - Surface
0
0 10 20 30 d(nm)

30 d(nm)

Experimental

- 3eV
5 - 9eV
— 17eV

30 d (r.\m)

Fig. 19. Comparison between the experimental intensity line

profile (c) and the calculated excitation probabilities for the two

models (a) and (b), as a function of impact parameter x (Ugarte

et al., 1992). The probabilities are obtained using an integration

energy window of 1 eV, and a convolution with a Gaussian

profile (FWHM 0.94 nm) in order to include the spatial
extension of the electron probe.
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probe is used. The classical electron energy-loss theory is
used to calculate the excitation probability for each
beam impact position (or trajectory) with proper
consideration of the probe size according to eqn.
(3.13b), and the results are shown in Fig. 19a and Fig.
19b for two different models. In contrast to the
experimental images shown in Fig. 19a, in which the
3—4 eV plasmon peak exhibits the maximum excitation
probability at the external surface (as indicated by an
arrowhead), the calculation for model a (Fig. 19a) shows
no detectable contrast at the external surface. This fine
feature is the only observable evidence using STEM that
can discriminate model b from model a. Thus, in
addition to the SiO; layer, a conductive Si layer exists on
the outer surface. Here, energy-filtered imaging is the
only technique which can identify the origin of the
observed peaks. Energy-filtered electron imaging can
also be performed using the signals acquired from
ionization edges in STEM, forming compositional
sensitive (Leapman and Hunt, 1995) and valence-state-
sensitive (Batson, 1994) images.

VI. VALENCE-LOSS SPECTRA OF SUPPORTED
PARTICLES

In the last few sections, the surface excitation in small
particles was based on an isolated single particle model.
The interaction between the particle and the substrate
was ignored. This model is usually inappropriate for
experimentally attainable systems, in which the particle
must be supported by a substrate. The interaction
between the particle and the substrate introduces new
plasmon peaks due to the coupling and resonance
between the interfaces. For a cluster of two oxidized Al
spheres, two surface plasmons located at 3.4 and 6.7 eV
have been observed (Batson, 1982). The 6.7 eV peak
arises from the interface of Al with Al,O3. The 3.4 eV
peak comes from the excitation of the oxide layer.

A theoretical description of the plasmon excitation in
the supported particle case was first considered by Wang
and Cowley (1987a) and later by Zabala and Rivacoba
(1991). A half-embedded spherical particle model is
proposed to study the new resonance frequencies
introduced by the interactions among the particle, its
oxidation layer and the substrate, as schematically
shown in Fig. 20. A metal particle of radius a is

€

Fig. 20. A half-embedded spherical particle model used in the
calculation of plasmon excitations in supported particle case.

surrounded by an oxide layer of thickness R—a, where
R is the outer radius of the surface layer. The solution of
Poisson’s equation can be found using the mirror-charge
method (Zaremba, 1985; Zabala and Rivacoba, 1991),
and the result has been applied to calculate the valence-
loss spectra of supported metal particles according to
eqn. (2.21) (Rivacoba et al., 1994; Zabala and Rivacoba,
1993).

The dispersion relations which determine the reso-
nance frequencies of surface plasmons in the supported
metal particle system have been given by Wang and
Cowley (1987a) and Zabala and Rivacoba (1991). In
general, four characteristic surface-plasmon peaks
should be observed in the valence spectra for an oxidized
metal particle sitting on a large metal substrate (Fig. 21):
one from the planar substrate surface (w,), one from the
substrate—oxide interface (w,), one from the metal
particle—oxide interface (w3), and one from the surface
of the oxide shell (w,4). All these predicted surface
plasmon peaks have been observed experimentally
(Wang and Cowley, 1987b). Theoretical calculations
have been performed to identify the origins of these peaks
and experimental results from the energy-filtered
plasmon-loss electron images have shown good agree-
ment (Wang and Cowley, 1987a,b; Batson, 1982). In the
general case, the number of plasmon peaks equals the
number of different interfaces and surfaces in the system.

For an Al sphere sitting on AlF;, two characteristic
resonance frequencies are observed: one from the Al-
AlF; interface and the other one from the Al spherical

o
=

L=1

(a)

Surface plasmon frequency olw,

0.20 ©4
0.00
1.00 1.10 120 1.30 1.40 1.50 1.60 1.70 1.80 1.90 2.00
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1.00 o, e3el@)
0.80 | @,

Surface plasmon frequency ws;‘mp
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Fig. 21. Surface plasmon frequencies calculated form an
oxidized Al particle sitting on an Al substrate using the model
shown in Fig. 20 for (a) L=1 and (b) L=2. (- - - -) plasmon
frequency for infinite vacuum—Al planar interface, (-~ - — - — - — )
plasmon for infinite Al;Os~Al planar interface, and (—---)
plasmon of an Al sphere surrounded by a large Al,03; medium.
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Surface plasmon frequency ws/wp

1.04
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Fig. 22. A comparison of the experimental observed and

theoretically calculated surface plasmon resonance frequencies

for an oxidized Al particle supported on AlF;. The dotted and

dashed curves represent the theoretical calculation plasmon

frequencies for L=1 and L=2, respectively, when the AlF;
substrate is absent.

surface. Figure 22 shows a comparison of the theoreti-
cally calculated and experimentally observed surface-
plasmon energies for a system of an oxidized Al sphere
sitting on an AlF; substrate as a function of the R/a
ratio. The 8 eV peak is due to the excitation of the Al-
Al,O; interface; the 4 eV peak is the excitation of the
oxide—substrate interface.

The existence of the substrate significantly affects the
polarization mode of the metal particle. Figure 23 shows
the induced charge distribution for the first few
excitation modes of a spherical particle sitting on a
substrate (Zabala and Rivacoba, 1991). For even values
of L, the effect of both external media is similar to an
effective medium of average dielectric response around
the sphere and consequently no charge density is
induced on the planar interface. For odd Ls, however,
the charge oscillations are more complex, indicating a
strong effect from the substrate. The half-embedded
particle model is easier to solve analytically. Numerical

L=1

Fig. 23. Calculated surface charge distribution in a half-
embedded spherical particle system for L=1, 2 and 3 modes.

Z. L. Wang

solution is necessary if the particle-support geometry is
complex (Ouyang and Issacson, 1989a).

The valence-loss spectrum for the half-embedded
particle model has been calculated by Wang and
Cowley (1987c), who solved Poisson’s equation in the
geometry of Fig. 20. More rigorous calculations have
been performed by Rivacoba et al. (1992, 1994) and
Zabala and Rivacoba (1993) using the semi-classical
theory proposed by Echenique et al. (1987a). Figure 24
shows a comparison of the calculated EELS spectrum
with an experimental spectrum for an Al particle sitting
on AlF; (Wang and Cowley, 1987c¢). It is apparent that
the calculated spectrum shows a good agreement with
the experimental spectrum.

A 3-4 eV low-energy plasmon peak was also observed
in EELS spectra of a Si particle coated with SiO,
(Ugarte et al., 1992). The result was interpreted based on
a model of a spherical particle coated with double layers
(see Fig. 19), the inner layer being SiO; and the outer
layer being Si. This Si—SiO,-Si spherical model accounts
for, at least in part, the resonance effect between the
particle and the substrate. The 3—4 eV plasmon indeed
came from the resonance of the particle and the
substrate. The surface plasmon frequencies for a bi-
spherical system have been calculated by Schmeits and
Dambly (1991), who showed that the 34 eV plasmon
peak came from the resonance of the two spheres with
equal or different radii, in agreement with the observa-
tion of Batson (1980, 1982).

Figure 25 gives a comparison of the EELS spectra
calculated for different dielectric configurations of an Al
sphere sitting on an AlF; substrate (Zabala and
Rivacoba, 1993). The spectrum from an isolated Al
sphere shows two strong peaks located at 8.7 and
9.6 eV. For the half embedded case, the spectrum shape
is dramatically changed. Comparing the spectra calcu-
lated for the two different excitation positions A and B
in the Al/AIF; case, the spectrum shapes are very
different but the energies of the characteristic peaks
remain unchanged. This is because the resonance modes
in a dielectric system are an intrinsic property of the

Fig. 24. A comparison of the calculated valence-loss spectrum
and an experimental spectrum for an Al particle of 20 nm in
diameter sitting on an AlF; substrate.
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Fig. 25. Calculated EELS spectra for a point electron probe
traveling near an Al particle half embedded in AlF; medium for
trajectories A (dark solid line) and B (dark dashed line). The
spectra corresponding to an isolated Al sphere in vacuum (thin
solid line) and in AlF; (thin dashed line) are also shown for
comparison. The particle radius is 10 nm and the impact
parameter is 11 nm (from the center of the sphere).

system and are independent of the position and source
of excitations, as shown by the calculation of Wang and
Cowley (1987b). However, the relative excitation prob-
ability of each mode depends sensitively on the position
and the impact parameter of the electron beam from the
corresponding surfacef/interface. For an Al sphere
embedded in a large AlF; medium, the spectrum shifts
significantly to low energies, and a 7.5 eV peak in
correspondence to the Al-AlF; interface appears.

The experimental observations of Batson (1982)
proved the above conclusions. Figure 26 shows three
experimental EELS spectra acquired for three different
excitation positions of an oxidized Al particle sitting on
a large Al sphere. With the electron directly positioned
on the particle (position A), a strong volume plasmon at
15-16 eV is seen; two surface plasmons located at 4 and
7 eV are also seen. When the probe is moved to position
B, the 7 eV peak remains but the 4 eV peak almost
disappears. At position C, only the peak at 4 ¢V remains
in the spectrum. These data show that the 4 eV is closely
related to the excitation of the AlO; layer coating on
the sphere, while the 7 eV peak is the resonance of the
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Fig. 26. Valence-loss spectra of a supported Al particle acquired
from three excitation positions of the electron probe, as shown
in the diagram. The ratio Rfa=1.4.
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Fig. 27. A model of a hemispherical particle supported by a
planar surface.

Al particle with the substrate. It is apparent that the
energies of these peaks remain the same although the
signal intensity changes with the change of probe impact
position.

Another supported-particle case is a hemisphere lying
on a flat substrate surface (Fig. 27). This is a good
approximation to many practical cases in which the
particle shape changes when it is attached onto a
substrate. The valence electron excitation in hemisphere
particles sitting on a planar surface was first calculated
by Wang and Cowley (1987d) and the results showed
reasonable agreement with experimental observations
(see Fig. 27). The calculations of Rivacoba et al. (1995a)
for the hemispherical case have shown significant
difference in comparison to those of spherical particles,
indicating the high sensitivity of the valence-loss spectra
to the geometrical configuration of small particles.

VII. VALENCE-LOSS SPECTRA OF
CYLINDRICAL INTERFACES

A cylindrical medium is a typical case of electro-
magnetism. The excitation of a cylindrical object is
closely related to the studies of carbon nanotubes and
metallic nanowires (Dravid et al., 1993). Recent experi-
ments have shown the shift of the plasmon peak with
increase of the tube diameter, or equivalently the number
of graphite layers (Bursill et al., 1994; Ajayan et al.,
1993). The theoretical modeling of Yannouleas et al.
(1994) has shown the dimensional crossovers of the
volume plasmon in coaxial carbon nanotubes, depending
on the number of graphite shells composing the tube.

The valence-loss spectra can provide important
electronic-structure information for cylindrical objects
and their dielectric response properties. The theoretical
scheme for calculating the valence-electron excitation
spectra in the cylindrical geometry was first outlined by
Chu et al. (1984). The theory was extended by Walsh
(1989) to calculate the spectra acquired from a cylindrical
hole drilled in amorphous AlF; by a fine electron probe in
STEM. Later, this theory was developed to include the
relativistic effect (retardation and Cerenkov radiation) by
Walsh (1991), who showed that the non-relativistic
solution underestimates the magnitude and overesti-
mates the energy of the surface plasmon modes. The
theory is suitable for calculating the spectra acquired
when an electron beam is traveling parallel to channels
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produced by micro-lithographic techniques (Mamola ez
al., 1987). Recently, Rivacoba et al. (1995b) has
calculated the electron energy-loss of a fast electron
when it is moving perpendicular to the symmetry axis of
the cylinder at an arbitrary impact parameter.

In this section, the basic theoretical scheme is outlined
for applying dielectric response theory in the cylindrical
system. Figure 28 shows a geometry of fast electron
excitation in the cylindrical configuration. The electron
is assumed to travel parallel to the cylindrical axis, inside
the cylinder. For simplicity, the non-relativistic approx-
imation is made. The potential distribution in space due
to a stationary charge at ro=(r, 0, z’) is determined by

V27(r, 1o) = —éa(r —r)d(@)o(z—2).  (1.1)

The solution for eqn. (7.1) is written as
. - [o. ¢}
Vin(r,x0) = Ve(r,ro) + 2(2 — dom)coS(m¢)
m=0
® dk .
J = exp(ikz) A (K, 1 K1) n K1),
—00 2T
(7.2)

V.(r, ) is the potential due to the incident electron:

Ve(r,10) = — 27:; 3 (2~ bom)cos(mg)
N ;m=0 (73)
J_m j—nexp[ik(z — vt)| L (|k|r, |k|r0),
and
Vour(r, 10) = i(2 — Som )cos(ma)
m=0

J°° %°"p("kz)3m<k)1m<lkla>1<m(|k|r),
(7.4)

where 4., and B, are coefficients that are determined by

Fig. 28. A schematic model showing valence electron excitation
in a cylindrical dielectrics by an external electron beam.

Z. L. Wang

the boundary conditions; K, and I, are modified Bessel
functions; L., is defined as

Lun([klr, [Klro) = K (1K|r) I (Jk|ro)0(r — ro)

(1.5)
+ K ([k|ro) Im (1k|r)6(ro — 1),

and 6(x) is a step function defined as: 8(x)=1 for x>0
and g(x)=0 for x <0. The Fourier transform of V(r,r,)
must be used to determine the 4,, and B, coefficients,
and details have been given by Chu ef al. (1984). The
solution for the valence-loss spectra of a fast electron
traveling parallel to the axis of two concentric cylinders
(Fig. 29) has been given by Walsh (1989). The concentric
cylindrical configuration occurs in cases such as electron
beam hole drilling and carbon tubes filled with metals.
For carbon tubes smaller than a few nm in diameter, the
hydrodynamic model is necessary to predict the disper-
sion relations (see Section 10; Yannouleas et al., 1994).

VIII. VALENCE-LOSS SPECTRA OF SPHEROIDS
AND IRREGULAR-SHAPED MEDIA

The dielectric media described in the last few sections
have constant curvatures. In practice, a small particle
may have a shape that is neither spherical nor cubic. It
becomes difficult or impossible to express the excitation
probability of a small particle in an analytical form if its
shape deviates from the conventional geometrical
configurations. Although it is possible, in principle, to
give the solution for a dielectric medium of arbitrary
shape in a form of operators (Ouyang and Issacson,
1989b; Cini, 1977), numerical calculation is essential in
solving the operator equations.

For a diclectric wedge (Fig. 30a), the parabolic-
cylindrical coordinates can be used to solve Poisson’s
equation if the electron is traveling parallel to the wedge
(Martinez-Torregrosa et al., 1990). The excitation of a
MgO cube can be approximated as the wedge case if a
fine electron probe is positioned parallel to and near a
corner of the cube.

Analytical solutions can also be found for dielectric
spheroids if the incident electron is traveling parallel to
the symmetry axis at an arbitrary impact parameter

Fig. 29. A coaxial cylinder object that is likely to occur in
carbon nanotubes filled with metals.
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Fig. 30. Schematics showing several irregular dielectric objects
that have been analyzed in the literature for valence electron
excitation.

(Illman et al., 1988, 1991, Little et al., 1982; Brako et al.,
1975). The rotational-parabolic coordinates are used for
describing the oblate and prolate dielectric media (Fig.
30b and Fig. 30c). The surface-plasmon frequencies of
these media with variable curvature have been tabulated
by Brako et al. (1975), who also gave the potential
distribution near the end of a thin prolate spheroid. This
result is useful in studying the potential distribution near
the probe tip in scanning tunneling microscopy.
Another type of irregular particle shape is hemisphe-
rical (Wang and Cowley, 1987d). The surface-plasmon
frequencies of the hemispherical system were given
analytically. The valence-loss spectra of a hemisphere
as a function of the impact position of the incident
electron have been calculated by Rivacoba et al. (1995a),
who showed the high sensitivity of the spectrum shape to
the excitation position of the fine electron probe. The
calculations were made based on eqn. (2.21) using the
potential generated by a stationary electron located at r,.
For a finite media system, eqn. (2.21) is probably the
most effective method for calculating the valence-loss
spectra. Figure 31 shows a set of EELS spectra and the
energy-filtered images of a non-spherical Al particle
sitting on a large AlF; substrate. From the energy-
filtered electron image of the Al volume plasmon (15 eV),
the particle exhibits a hemispherical-like shape. The
theoretical calculation of Wang and Cowley (1987d) for
a supported hemisphere gives two surface plasmon
peaks, located at 10.8 and 4.7 eV. The experimental
observation showed peaks at 11 and 3.5 eV. The 3.5 eV
peak is due to the resonance of the particle with the
support (Fig. 31b), and the 11 eV peak is due to the
excitation of the hemisphere particle (Fig. 31c).
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IX. VALENCE-LOSS SPECTRA OF COMPOSITE
MEDIA

Nanophase and nanocomposite materials have at-

- tracted much interest recently. These materials are

composed of small particles and a matrix phase so
that the collective excitation of the material is a
combined excitation of the volumes and interfaces, as
shown in Fig. 32. In general, it is difficult to separate the
excitation of each individual particle, particular for
condensed composite, because of small size and strong
overlap. In this section, the effective medium theory is
outline for calculating the valence-loss spectra of
composite materials.

We start with the example of Al reduction from o-
alumina (Al,O3) under electron-beam radiation. Figure
33 shows a comparison of the EELS spectra acquired in
REM geometry (Wang, 1993) from an alumina surface
after being illuminated for different lengths of time
under a strong electron beam. After the surface was
illuminated for about 4 min, the peak located at 9-
10 eV clearly begins to grow. The energy of this peak
can be related to the surface-plasmon energy of small
aluminium particles. The volume plasmon of Al located
at 15 eV does not increase significantly in intensity at
this stage because the valence electron excitation is
dominated by the surface effect if the particles are smalil.
The alumina peak remains at about the same energy
(22 eV). The 15 eV peak became more prominent after
the surface was illuminated for 9 min or more,
indicating the formation of larger aluminium particles.
With the increase of the particle size the excitation
probability of the volume plasmon is increased. The
excitation of the surface plasmon (9-10 eV) is also
strengthened, because the total surface area of the
particles is increased.

Evolution of the spectrum shape is due to the
formation of aluminium particles on the surface. The
Al reduction process is attributed to the electron-beam-
induced desorption of oxygen atoms after exciting the
internal Auger decay process (Knotek and Feibelman,
1978, 1979; Feibelman and Knotek, 1978). According to
the energy level diagram of Al,Os, the highest occupied
level of the Al*2 ion is the Al(2p) level, with a binding
energy of 73 eV. If an external electron ionizes this level
the dominant decay mode is an inter-atomic Auger
process in which one O(2p) electron decays into the
Al(2p) hole. This releases about 70 eV of energy which is
taken up by the emission of one or two Auger electrons
from the O(2p) state. The O~ 2 ion thus loses up to three
electrons and becomes a positively charged O™ ion, so
will be rejected by the repulsive Coulomb force. The
accumulation of Al ions forms Al particles.

In the case of Al metal formed by reduction of
alumina, the surface layer is not a uniform dielectric
layer but a mixture of small Al particles separated by
vacuum. Since many small particles are present under
the beam, the dielectric property of this mixed layer can
be statistically described by an effective dielectric
function (Maxwell-Garnett, 1904, 1906),
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Fig. 31. (a) EELS spectrum acquired from a hemispherical-like particle sitting on an AlF; substrate, (b)~(d) are the energy-filtered
electron images recorded using the electrons that have suffered 3.5, 11 and 15 eV energy-losses, respectively.

g = SB{(I + 2f;,)£A + 2(1 —'f;!)sB}’ (91)

(1-f)ea+ (2 +f)en

where &, is the dielectric function of the particles with
volume fraction f, mixed in the matrix of dielectric
function eg. In the case of Fig. 33, €4 applies to Al and
ep= 1. The calculation can be made using the electron
trajectory shown in Fig. 12b, with consideration of the
surface layer by using eqn. (4.1a). Figure 34 shows a
comparison of the calculated EELS spectrum with an
observed spectrum from an alumina surface with Al
reduction. The effective penetration depth of the beam
into alumina was chosen as d, =1 nm. The choice of d,
can sensitively affect the spectral match at higher
energies as well as the peak at 22 eV. The thickness of
the sandwich layer was taken as 2A=3 nm and the
volume fraction of the Al particles was chosen to be
f,=0.07. These parameters were chosen in order to
match the intensity of the 10 eV surface plasmon peak
and the 22 eV alumina plasmon. The choice of the

Fig. 32. Model of a composite material composed of spherical
particles and a continuous matrix.

thickness of the sandwich layer is correlated with the
choice of the volume fraction f,, because the average
thickness of Al metal is determined by 24f,, which was
estimated as 0.2 nm. The peak located at about 9-10 eV
is present only when Al particles are a constituent of the
sandwich layer, and is obviously the surface plasmon of
the Al metal particles.

It must be pointed out that the effective-medium

15eV
0.04 4

9 minutes

0.03 1

P/eV 4 minutes
002 4+—

1 minute
0.014——

e —
0 10 20 30

40eVv

Fig. 33. A comparison of the EELS spectra acquired in REM

geometry from an alumina surface at different lengths of

illumination time after first seen under the beam. The growth of

the 9-10 eV (surface plasmon for Al particles) and 15eV

(volume plasmon of Al) peaks indicates the formation of Al
particles.
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Fig. 34. A comparison of a simulated EELS spectrum in REM

geometry according to dielectric response theory and an

observed spectrum from the alumina surface in Fig. 33 during
the reduction of aluminum.

theory breaks down if the particles are so big that the
excitation property of each individual particle cannot be
represented by an average excitation. Thus, the calcula-
tion cannot fit the spectrum displayed at the top of Fig.
33, especially at the position of the 15 eV peak of the Al
volume plasmon, because this peak is the volume
excitation of Al. A detailed analysis of the effective-
medium theory has been given by Howie and Walsh
(1991), who compared several effective-medium models
and concluded that, they are only partially successful in
explaining the energy-loss spectra observed and do not
account for the bulk-loss peak from the minority phase;
a simple averaged excitation model, described below,
was presented and appeared to give much better results.

The average excitation starts from the bulk energy-
loss functions Im(— 1/e4) and Im(— 1/eg) as well as the
interface energy-loss function Im[—3/(ss +2¢p)] (for a
spherical particle with L= 1) which is appropriate for a
small sphere of material A embedded in material B. The
effective energy-loss function is written as (Howie and
Walsh, 1991)

1) =ﬁ{1;n{_i}+gm[lm{_;jz_®}
m{ ]} -0 p{m{ -1}
{2 {1

(9-2)

where gine = 1/(1 + 3aw/v), and g, = 21,/(1+2£,). In eqn.
(9.2), the main terms with factors f, and (1 —f,) describe
the contributions from two types phases which form the
composite. The g, and ge. terms give the interface
contribution and the corresponding reduction in the
bulk contribution. The calculation according to eqn.
(9.2) gives the best fit to the Al surface and volume
plasmons as well as the spectrum of AlF; as in the case
of Al reduction from AlF;. In eqn. (9.2), if the

particles are large enough so that the interface excitation
is unimportant,

Im{—s—:g} zﬁlm{—i} + (1 —fv)lm{—glg}. (9.3)

Equation (9.3) can be interpreted as follows. In
composite materials, the observed valence-loss spectra
are considered as a linear superposition of the spectra
recorded from each component of the composite,
weighted by the volume fraction of the corresponding
phase. It is therefore possible to determine the ratio of
the two materials contained in the composite, as has
been demonstrated by Evans et al. (1991) in determina-
tion the cross-section depth-profile of Al implanted in
MgAl,O4. This analysis ignores the contribution made
by the interfaces but this is a reasonable approximation
if the particle sizes are large.

For a general case, eqn. (9.3) is rewritten as

Al oy rormd L
Im{ ge“} ~ le 1Y Im{ 6]_}, (9.42)
and
29=1, (9.4b)

J=1

where | ¥ is the volume fraction of phase j with dielectric
function ¢. Therefore, the experimentally observed
spectrum is a linear superposition of the spectra
acquired from the pure phases, respectively, that
compose the material

dP(w) S 4 d2P;(w)

dw dodz (9:3)

j=1

The superposition coefficient is a thickness-integrated
fraction of the corresponding phase at the region where
the spectrum was acquired. If this analysis is performed
for each position of the beam in STEM, a digital image
is obtained for the intensity of [dy(x,y) f¥(x,y)] across
the specimen. This image is simply the thickness-
integrated distribution map of phase j. This technique
has been successfully applied to map subcellular
distribution of water in frozen-hydrated biological
cryosections (Sun et al., 1993, 1995; Leapman et al.,
1994), as shown below. A series of detailed data-
processing techniques used in this study has been
described by Sun et al. (1993).

Figure 35 shows a comparison of single-loss valence
spectra acquired from several standard specimens which
are vitally important in biological science. Each of the
compounds has its own characteristic EELS spectrum
that is different from others cither at the energy-loss
region 3-10 eV or at the position of the main peak
located approximately at 20-25 eV. These character-
istics are the ‘finger prints’ of those compounds. If the
experimentally acquired single-loss EELS spectrum
(after data processing) from a real specimen is expressed
as a sum of the contributions from the constituent
compounds, as listed in Fig. 35, these components are
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Fig. 35. A comparison of valence EELS spectra acquired from

standard specimens of vitreous water, hexagonal ice, protein,

lipid, nucleic acid and sucrose in the energy-loss range (a) 0—

15 eV and (b) 0-30 eV (Sun et al., 1993). The width of view is
10 mm.

treated as standard reference spectra whose super-
position coefficients (ff,’)) can be determined by fitting
the observed spectrum with the standard spectra using
the multiple least squares technique. Fig. 36 shows a
thickness-integrated concentration map of water in a
hydrated cryosection (Sun et al., 1995). The brighter
contrast indicates higher local thickness-integrated
water concentration. This is an excellent example of
EELS application in biological science.

X. ELECTRON-DENSITY FLUCTUATION IN
SMALL METALLIC PARTICLES AND
HYDRODYNAMIC MODEL

In a small metallic particle, the quantized energy
levels form a discrete electronic structure. If the energy-
level spacing is comparable to or larger than the relevant
energy parameters in a physical phenomenon, the
discreteness of levels may give rise to anomalies quite
distinct from the normal behavior in the bulk material.
The imaginary dielectric function of a metal particle is
found to be inversely proportional to the size of the
particle (Kawabata and Kubo, 1966; Kreibig and
Fragstein, 1969). The dependence of the electrical
conductivity and dielectric response function for small

Z.L. Wang

Fig. 36. A thickness-projected water distribution map in a
hydrated cryosection as determined by valence-loss EELS in
STEM (Sun et al., 1993).

metal particles have been given by Ruppin and Yatom
(1976).

In dielectric response theory, described in all the
sections above, the distribution of valence electrons in
the scattering object is assumed to be unaffected by the
impact of the incident electron, and the charge at the
surface was attributed to local polarization. However, a
problem is raised when the particle size becomes so
small that the number of the valence electrons in the
scattering object is no longer large. The electron-density
disturbance by the induced surface charges becomes
significant in this case. A different theoretical approach
must be taken in order to include the effect of electron-
density fluctuation in the scattering object (Echenique
and Ritchie, 1979).

There are many quantum mechanical theories
regarding the plasmon oscillation and damping in
metals (Bohm, 1953; Nozieres and Pine, 1958; Ferrell,
1956, 1957, Hasegawa and Watabe, 1969; Hasegawa,
1971). The plasmon is derived from a quantization
phenomenon, as represented by the harmonic oscil-
lator model, analogous to a phonon. These theories
were developed for large media and cannot be easily
modified to calculate the motion of electrons in a
small object under the impact of an external charged
particle.

To consider density fluctuation in a metallic particle,
the free-electron gas model is assumed, so that the
electrons are treated as a charged-‘fluid” with potential
gradient and pressure gradient. This is a hydrodynamic
model, in which the behavior of the perturbed electron
gas and the electric field are described by a set of
linearized hydrodynamic equations (Ritchie, 1957,
Fujimoto and Komaki, 1968; Crowell and Ritchie,
1968): (a) the force equation, (b) Poisson’s equation and
(c) the continuity equation.
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d_ = e s B .
= VO(r,7) = —;VV(r, 1) —+—%Vn(r, 1),

5 (10.1a)

VA, 1) = (A, £) + 3(x = 20)3(3)3(z — w1,
(10.1b)

and

V2O(r, t) = %ﬁ(r, t)/no,
where ®(r,?) and fi(r,?) are perturbations in the velocity
potential and electron density, respectively, in the
electron gas; #y is the electron density in the undisturbed
state of the electron gas and f is the root-mean-square
(rms) propagation speed of the disturbance through the
electron gas. The appropriate boundary conditions are
(i) continuity of the electric potential at the surface of
the sphere, (ii) continuity of the normal component of
the electric displacement at the surface of the sphere,
and (iii) the vanishing of the normal component of the
disturbance velocity at the surface of the sphere. If one
is interested only in the resonance dispersion relation of
the system, the delta function term in eqn. (10.1b) can be
dropped. If the time-dependent term 1i(r,?) is expressed
as 0(r,?) = fi(r)exp(iew?), ifr) is determined by

(10.1c)

2 __ (DZ
[VZ + 2 5 p]ﬁ(r) —0, (10.2)
or equivalently
2 _ .32
v+ d 7 Cup]V2 V(r)=0. (10.3)

The solution of either eqn. (10.2) or eqn. (10.3) would
give the dispersion relation of the metal system.

The solution of the hydrodynamic equations has been
given analytically for spherical metal particles (Fujimoto
and Komaki, 1968; Crowell and Ritchie, 1968; Ruppin,
1978; Barberan and Bausells, 1985), and the final results
are quoted here. The plasmon resonance frequency for a
small metallic particle is determined by

2L+1 <w_2> —1=21 0 (ga) /R (ga)),

L w} qa

(10.4)

where g=(w”—»2)"/?, and Ji(x) is the spherical Bessel
function. It is apparent that the resonance frequency
depends on the size of the particle. For large-size
particles with ga> >1, this result reduces to

0= wp4 /557 [see eqn. (5.9)], just as expected. Ruppin

(1978) has shown the increase of volume and surface
plasmon energies as well as the FWHM of the volume
plasmon peak with a decrease in particle size. Figure 37
shows the calculated surface and volume plasmon
frequencies of a spherical metallic particle for the lowest
four modes L=1-4. The spatial dispersion shows a
significant effect on the energy of the surface plasmon if
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Fig. 37. Calculated (2) volume (am)i (b) surface plasmon
frequencies for the lowest four modes of a metal particle, as a
function of its radius. Full lines: with spatial dispersion
included; broken curves: without spatial dispersion.

the particle is smaller than 10 nm in diameter. The
plasmon frequencies increase with the decrease of particle
size.

Experimental studies of Acheche et al. (1986) and
Batson ef al. (1976) have confirmed the theoretically
predicted results. The dependence of volume plasmon
frequency on particle size is directly related to the
dispersion relationship. In the electron-gas model, the
frequency is related to the wave vector ¢ by (Lindhard,
1954)

2(g) = 0*() + D7,
where vg is the Fermi velocity. The review by
Schattschneider and Jouffrey (1995) has given a
systematic description on the dispersion relation in
plasmon excitations. For small particles, the wave vector
q is quantized and is determined by the particle size for
the reasons described below (Acheche ef al., 1986). For a
sphere of radius a, the minimum value of ¢ is 2; the
maximum wavelength of the charge fluctuation must be
smaller than or equal to the diameter of the sphere. The
maximum of ¢ is g, thus L <g<g.. From eqn. (10.5),
the volume plasmon frequency depends on the radius of
the particle, as observed experimentally by Acheche et
al. (1986). Figure 38 shows a group of experimental data
from gallium clusters. The volume plasmon frequency
increases significantly when the particle size is small. For

(10.5)
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Fig. 38. Variation of the volume plasmon energy in metallic
(open circles) and oxidized (solid circles) gallium particles (from
Acheche et al., 1986).

particles larger than 10 nm in diameter, the size effect
becomes unimportant and the theories presented in the
last few sections hold.

When the particle becomes very small, quantum effect
may appear in the experimentally observed surface
plasmon energy (Ouyang et al., 1992); the surface
plasmon energy showed a dip when the particle size
decreased from 20 to 4 nm, in contrast to the calculated
result shown in Fig. 37. In this case, calculation based
on the hydrodynamic model cannot interpret the
observed phenomenon. But the origin of this phenom-
enon is not yet clear.

For cylindrical geometry, the hydrodynamic equa-
tions have been solved to describe the dispersion relation
in carbon nanotubes (Yannouleas ez al., 1994). The
results indicate the dimensionality crossovers of the
volume plasmon in coaxial carbon nanotubes, de-
pending on the number of graphite layers in the tube.
The solution of the hydrodynamic equations for
supported metal particles has also been obtained by
Wang and Cowley (1987d). For a thin metal slab, the
excitation probability was calculated by Ritchie (1957)

[e.g. eqn. (3.25)].

XI. LOCALIZATION EFFECT IN SURFACE
EXCITATION

Plasmons refer to the collective excitations of the
valence electrons in a solid. The charge oscillation
associated with the plasmon can reach the entire
medium even though the excitation source is a fine
electron probe. Therefore, plasmon excitation is usually
referred to as a delocalized scattering process which
occurs even when the electron is far from the medium.
From eqn. (3.13a), the excitation probability of the
surface plasmon drops quickly when the incident
electron is far from the surface, but the surface
excitation still occurs even when the beam impact
parameter is larger than 2 nm from the surface (see
Fig. 10). It is necessary to estimate the largest impact
parameter of an electron before the plasmon excitation

occurs. This distance is approximately the localization
parameter for the excitation.

The localization effect is best seen in the energy-
filtered images formed by the electrons which have
suffered energy loss. For a chemically sharp interface of
two media, the drop in intensity of the characteristic
plasmon peak of one medium as the electron impact
parameter increases is a direct measurement of the
localization. This experiment has been performed in
TEM with the use of an electron energy-filter (Wang and
Shapiro, 1995). For a cross-section Al/Ti multilayer
media, the volume plasmons of Al and Ti locate at two
distinct energies, as shown previously in Fig. 6; it is thus
possible to set the energy-filter at the Al peak. The
energy-filtered image directly reflects the decrease in the
intensity of the 15 eV Al plasmon peak as a function of
the impact parameter.

Figure 39a and Fig. 39b show a pair of energy-filtered
high-resolution TEM images of a cross-section Al/Ti
(111) interface recorded using elastic electrons (0-loss)
and Al plasmon-loss electrons, respectively. The crystal
lattices are clearly resolved in the 0-loss image. The Al
and Ti layers have an epitaxial relation and the interface
is (111). The atom rows are clearly resolved. Chemical
imaging using atomic inner-shell ionization edges has
shown that, at a spatial resolution of 0.4 nm, the
interface is chemically sharp (Wang and Shapiro, 1995).
In the 15 eV plasmon-loss filtered electron image, the Al
side shows stronger intensity, but the interfacial region
does not show a sharp transition. The intensity drop
across the interface reflects the delocalization effect in
plasmon excitation.

To estimate the spatial resolution of the plasmon-loss
electron image, a line scan was made across the Al/Ti
interface, and the result is shown in Fig. 40. The fine
oscillation in the intensity profile is due to the lattice
fringes. The intensity profile drops within a distance of
1 nm around the interface, thus, the spatial resolution is
approximately 1.0 nm.

To provide a theoretical interpretation regarding the
spatial resolution observed in the plasmon-loss electron
image shown in Fig. 40, eqn. (3.13a) is applied to
calculate the plasmon-loss intensity as a function of the
electron impact distance from the interface, the result is
shown in Fig. 41 for an energy window of
13<AE<17 eV. The intensity drop at the interface is
qualitatively in agreement with the experimental ob-
servation shown in Fig. 40. The spatial resolution is half
of the width within which the intensity drops from the
flat Al region to the flat Ti region. Although the interface
was assumed to be chemically sharp in the calculation,
the spatial resolution is limited to about 1 nm.

A quantum mechanical description of image forma-
tion in STEM has been outlined by Kohl and Rose
(1985), and the theory was applied to calculate the
energy-filtered plasmon-loss electron image of small
metal particles in STEM (Kohl, 1983). A recent
calculation by Muller and Silcox (1995) has shown
that a resolution approaching 0.5 nm can be achieved in
energy-filtered images using valence-loss electrons.
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Fig. 39. (a) Zero-loss and (b) 15 eV Al-plasmon loss energy-selected high-resolution TEM images of an Al/Ti (111) interface,
showing the localization effect of plasmon excitation at interfaces. Energy window width A=4 eV. Beam azimuth [110].

XII. QUANTUM THEORY OF VALENCE
ELECTRON EXCITATION

The classical dielectric response theory is a convenient
method for describing valence excitations in high-energy
electron scattering, and it has shown remarkable success
even for particles smaller than a few nanometers. For
metals under the free-electron approximation, quantum

mechanical charge-density fluctuation theory (Ashley
and Ferrell, 1976) has shown equivalent results to those
obtained using dielectric response theory (Ritchie, 1981;
Ritchie and Howie, 1988). In the excitations of small
metal particles, both theories have given identical results
(Ferrell and Echenique, 1985). The review given by
Echenique et al. (1990) is a comprehensive description of
the dynamic interaction of a fast ion with condensed



294
o 8000 2az
& 3
@ b o o 00 &
£ :’5:%’:.-&,
Lo .‘ [J
® 6000 ‘l. 13
[0
“-_;@ o <—2nm
'S 4000
[
5g |
ca
o SN
& 22000 -
o D
25 Al Ti
<E <
0 M 4 T v T M| T
3 2 a0 1 2 3

Distance x (nm)

Fig. 40. An intensity line scan across the Al/Ti interface from

the image recorded using the 15 eV Al-plasmon-loss electron

image (Fig. 37b), showing the dependence of inelastic absorp-

tion function on the impact parameter x of the electron from

the interface. This curve determines the spatial resolution of
valence-loss electron imaging.

matter. In this section, the equivalence of dielectric
response theory with the quantum theory is proved for a
general case. This exercise is necessary to establish the
basis of the classical theory.

A. Quantum mechanical basis of classical theory

Figure 42 shows schematically a many-particle system
of electrons undergoing perturbation by a fast electron
with velocity v=vZ. The coordinates of the electrons are
referred to some arbitrary origin at a point O. We omit
spin indices for simplicity and only consider spin-
independent interactions. Eigenstates and eigenenergies
of the crystal electrons are represented by |n> and %,
respectively. The |n> states are assumed orthonormal
and complete, and the index » represents all observable
quantum states characteristic of the system. A plane
wave basis set is taken for the incident electron:
exp(2riK-r). The Hamiltonian H' characterizing inter-
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Fig. 41. Calculated excitation probability across an Al/Ti

interface for an energy loss in a range of 13<AE<17 eV. The
interface position is indicated by a vertical line.
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Fig. 42. Interaction of an external electron with the electrons
and nuclei in a dielectric media system.

action between the fast electron and the crystal electrons
is

e? Zyé?

r) —21247r30|r—rjl ;4neolr—rk|’ (12.1)
where ry and Ry are the positions of the Jth crystal
electron and the kth nucleus of charge Zye, respectively.

The standard first-order perturbation theory is
applied to obtain the cross-section for excitation of a
transition of the many-electron system from its ground
state |0> to a state |n>, accompanied by the transition
of the fast electron between momentum -eigenstates
characterized by wave vectors K (with v=hAK/mg) and
K¢. From the Golden rule

On0 = h2 Z| <n|Jdr exp[2nik - r]41£0

Sra S

0> [*6(E/h — Eg/h — ),

(12.2)

where wno= w0, —wy, k=K—K;, E and E; stand for the
energy of the incident electron before and after
interacting with the crystal. The delta function stands
for the conservation of energy. The contribution by
nuclei will be dropped because of the orthonormal
property of |n>. The sum over K is to integrate the
contributions made by the electron excitations of
different momentum transfers but the same energy-
loss. Changing variables:

n n?
E-E=—(K - K)=—(k-K-&?)
my mo
(12.3)
h*k?
=hk-v——
2m0

carrying out the integral over r in (12.2) and using an
identity

[ar

yields

exp(—2niu - r)
Ir—r|

__exp(—2niu - r)

u?

, (12.4)
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(12.5a)

where

pro(t) < n| Y exp(—2miz - 1y)|0 > (12.5b)
J

is the matrix element of the density operator. For fast
electrons, the sum over K; can be replaced by an
integral, thus

2 [e1?
n0 = nhy [ﬁ]
2
Jdk‘_p“‘;;—k)lé(hk v — 2mPhk? [mg — o).

(12.6)

To introduce an impact parameter conjugate for
momentum transfer, the recoil of the incident electron is
ignored; that is, the term proportional to k> in the
argument of the delta function is dropped (Ritchie,
1981). The larger v becomes, the less important will be
the neglected term. Thus eqn. (12.6) is approximated as

9 12
a2 [i_] Jdkagk)
nh*y |4meg k (12 7)
wolt
Jdup%g)é(k —u)d(27k - v — wp).
Making use of an identity
o(ky —mp) = Jdb exp[2ni(kp — up) - b] (12.8)

in order to express eqn. (12.6) in terms of a spatial
variable b, where b=(by,by,0), ky=(kx.ky,0) and u,=
(ux,uy,0). Eqn. 12.7 may be rewritten as

2 12 2
oo = — [e—] Jdkwé(hk-v—mno)

= ity |4meg k4
477 pao(k)
‘P[M] Jdbljdk >

exp[2nik - b6 (2nk,v — wno) |
(12.9)
Expressing the energy-conserving delta function in

terms of an integral over time, i.e.

d(2mk,y — wno) = E%Jdt exp[2nik,vt — iogot], (12.15)

and writing out the matrix element, s,,o may be expressed
as an integral over impact parameter b,
Ono = Jdb|ano(b)|2, (12.16a)

where
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1 ¢
inh 4meg

ano(b) = exp[2nik - b]

Poo(K)
[axtal
Jdt exp[2nik,vt — ionot]

1 [® e2
= — dt =
ih)_o <n XJ:4neo|b+vzt — 1]

|0 > xexp[—iwnot]

1 XD
=— dt < n|H'|0 > exp[—iwnot].
ih)_o

(12.16b)

Therefore, a,o may be regarded as the probability
amplitude that the crystal electron system will experi-
ence a transition under the influence of the Coulomb
field of a classical point electron traveling with constant
velocity v along a path specified by the impact parameter
b, beginning at z = — oo and ending at z = oco. As is
not surprising, eqn. (12.16b) agrees exactly with the
result of a first-order quantum perturbation derivation
of this probability amplitude, in which the interaction
Hamiltonian H’ is taken in the classically prescribed,
time-dependent form:

&
H = .
ZJ:4nso|b + vzt — 1y

(12.17)

The result presented in eqn. (12.16a) and eqn. (12.16b)
has been generalized by Ritchie and Howie (1988) for a
case in which the incident electron beam is not a plane
wave but a converged electron probe in STEM. They
showed that, when all inelastically scattered electrons
are collected, the measured probability of exciting a
given transition may be computed theoretically as if the
microprobe consisted of an incoherent superposition of
classical trajectories distributed lateral to the beam
direction according to the probe intensity function.

B. Density operator and dielectric response theory

Before starting from eqn. (12.9) to derive dielectric
response theory, the density operator is considered first.
In inelastic electron scattering, an important quantity is
the so called mixed dynamic form factor which is related
to the density operator by (Kohl and Rose, 1985; Kohl,
1995; Wang, 1995)

S(u,u') Z Pon (W) pno(—1).

n#0

(12.18)

The role played by S(u,w’) in inelastic scattering is
equivalent to that taken by the crystal potential ¥ in
elastic scattering. S(u,u’) and V(r) are the only two
structurally related quantities that determine the beha-
vior of electron scattering in crystals. The mixed
dynamic form factor is directly related to the generalized
dielectric function ey (w) (Kohl and Rose, 1985) by
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o0 27tih£o
S /) =
(u, ) J_oo 9 T cxp(—eo a7

(comw)

If one takes a special case with u=w’, eqn. (12.19) is
simplified as

S(u,u) = [pao(w)[?
n#0

(12.19)

_Jm do 47'Eh80
=) e~ exp(— e ks D]

ol

where Im{— ﬁ} = Im{— e(Tlu‘)} is just the energy-loss
function.

For wvalence electron excitation, the condition
|hw|> >kgT is always satisfied. Thus, the integration
of w from —oo to 0 vanishes in eqn. (12.20), since
[1—exp(—#ew/kgT)] ' ~0. Under this approximation,
eqn. (12.20) becomes

(12.20)

_47th80 o0 ) .I
S(“,“) = e2 Jo do u Im{ m} (1221)

The total excitation probability of the crystal elec-
trons is now calculated. Summing over # in eqn. (12.9)
for all valence states » (n > 0),

0y = E Ono

n#0
2 &7 1 2
=— o Z Jdkpé(anzv — @n0)|pro (k).

n#0
(12.22)

This procedure is carried out in order to include the
excitations of all the possible crystal valence states
which, in practice, means collecting electrons scattered
to all different angles with different energy-losses. The
energy conservation law requires fw,o="hw (for an
energy-loss Aw). Substituting eqn. (12.18) into eqn.
(12.22) and using eqn. (12.21), one finds

da‘t 6'2
-(% - 4’:"536()751172 jdkx

1 1
dk Im
J Yk2 4+ k2 + (w/2mv)* { &, k)}

e2

z ———
4m2ephv?

Im{ —é}mu + (ruev/)?].
(12.23)

This is identical to eqn. (3.17). Thus, the equivalence
of classical dielectric response theory and quantum
transition theory is proven. This equivalence is based on
assumptions that all the scattered electrons of different
energies and wave vectors are collected by the spectro-
meter and that the relativistic effect is ignored. For
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valence clectron excitation, the collection angle of the
spectrometer is usually much larger than the character-
istic scattering angle ®g~AE/2E,, typically about
0.1 mrad, where E is the energy of the incident electron;
almost all the electrons are collected if diffraction effects
are weak.

The classical theory and the quantum theory can be
compared in the following aspects. (1) If one is interested
in the angular distribution (or dispersion relation) of
inelastically scattered electrons, the quantum theory
must be used, because the electron trajectory defined in
classical theory cannot describe the electron angular
distribution as a result of scattering. (ii)) The multi-
plasmon effect (Sunjic and Lucas, 1971), which refers to
the excitation of more than one plasmon in a single
scattering process (Ashley and Ritchie, 1970; Spence and
Spargo, 1971; Schattschneider et al., 1987), is ignored in
the classical theory. The quantum mechanical theory of
Lucas and Sunjic (1972) has considered this effect
although its excitation probability is very small. (iii)
The wave property of an incident electron is ignored in
classical electron energy-loss theory. For an electron
probe of finite size, the theory needs to be modified to
include the shape function of the electron probe (Ritchie
and Howie, 1988). The relativistic effect can also be easily
included in the classical theory.

In conclusion, the classical theory, particularly in
cases where the geometrical configuration of the di-
electric media is complex, is the most convenient method
for interpreting valence-electron excitation. This theory
should be applicable to almost all experimental situa-
tions unless the quantum size effect is significant.

XIII. SUMMARY

Plasmon oscillations characterize the response of a
dielectric medium to the stimulation of an external
charged particle. Valence-loss spectra represent the
interband transitions and the modes of collective
excitation of valence electrons. Surface plasmons are
resonance modes of surface charges induced by a fast
moving electron in different geometrical configurations.
In this article, we have reviewed the classical electron
energy-loss theory for calculating the resonance modes
and excitation probabilities of plasmons in condensed
matter. The objective of this review was to provide a
comprehensive coverage, starting from fundamental
equations, of dielectric response theory and its applica-
tions for calculating the excitation probability (as a
function of the impact parameter/position) of plasmons
in thin films, surfaces, interfaces, isolated particles and
supported particles. The article is aimed at providing a
guidance for readers who are interested in quantitative
valence-loss spectroscopy. The classical energy-loss
theory is equivalent to the quantum mechanical theory,
provided all the scattered electrons are collected by the
spectrometer. The hydrodynamic model was introduced
to include the fluctuation of electron density when the
particle size is smaller than 10 nm.
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With increasing interest in nanophase and nanostruc-
tured materials, characterizing the interband transition
of each individual nanoparticle is relevant to many
problems of practical importance. Quantized energy
levels are expected to occur in the valence band when the
particle size is less than 10 nm. Valence-loss spectro-
scopy performed using a fine electron probe in scanning
transmission electron microscopy is a unique technique
that will provide the dielectric response information
from a small region. This review provides a systematic
theoretical description of the technique. More experi-
mental research is necessary to establish and expand the
applications of valence-loss spectroscopy in materials
science.

XIV. NOTE

FORTRAN source codes have been developed for
using eqn. (3.10a) and eqn. (3.25), to calculate single-
loss spectra of interface/surface excitations and surface
and volume excitations in a thin crystal slab in TEM,
respectively. A FORTRAN source code has also been
developed for calculating single-loss valence electron
excitation spectra acquired in REM geometry. These
programs will be freely provided by the author, upon
request via e-mail.
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