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A generalized multislice theory is proposed from quantum mechanics to approach the multiple
elastic and multiple inelastic scattering of high-energy electrons in a solid. The nonperiodic struc-
ture of crystals can be introduced in the calculations for the scattering geometries of transmission
electron microscopy and reflection electron microscopy. Detailed applications of this generalized
theory will be given for calculating (a) the energy-filtered-plasmon energy-loss diffraction patterns
and images, (b) the energy-filtered diffraction patterns from atomic inner-shell losses, and (c) the
contribution of thermal diffuse scattering to the high-angle annular-dark-field (ADF) scanning-
transmission-electron-microscopy (STEM) lattice images. An “incoherent” imaging theory is
presented for simulating the ADF STEM images and the detailed calculations are addressed for

Ge/Si interfaces.

I. INTRODUCTION

Electron inelastic scattering, as a general phenomenon
in high-energy electron diffraction, has been widely used
in investigating the structures of materials. The early
theory of describing the creation and scattering of high-
energy inelastic waves in a crystal was due to Yoshioka.!
Based on quantum-mechanical theory, he derived a set of
coupled Schrodinger equations by considering all the
transitions among the ground state and the excited states
of the crystal. Due to the complicated coupling between
those equations, a proper method has not been estab-
lished to solve all the inelastic components for a general
crystal structure with defects. Some work has been done
to consider the effect on the elastic wave of inelastic
scattering under the first-order approximation. Besides
the crystal potential of atomic arrangement, Yoshioka'
predicted that there is a real addition to the crystal po-
tential from virtual inelastic scattering as well as an imag-
inary absorption correction. The corrections due to
single-electron excitation were calculated using the
Thomas-Fermi atomic model' and atomic wave func-
tions.2 This correction has also been calculated by Hum-
phreys and Hirsch? for different inelastic excitation pro-
cesses. The contribution due to plasmon scattering was
studied by Radi* and Yoshioka and Kainuma.’ It is
shown by Wang® that all the effects to elastic scattering
of all the inelastic processes (single-electron excitation,
plasmon excitation, and phonon excitation) can be
characterized by a complex potential in the multislice ap-
proach, which is related to the generalized dielectric
response function of the solid.

The first attempt of solving the inelastic waves from
Yoshioka’s coupling equations was initiated by Howie.’
Based on the Bloch-wave approach with use of the
small-angle approximation, he gave an analytical solution
for phonon excitations under some simplified conditions.
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He also showed that the plasmon scattering preserves the
imaging contrast of the elastic scattering. By neglecting
the transitions among the excited states, this Bloch-wave
approach has been extensively applied to phonon excita-
tions.>® Serneels et al.’° have proposed an iteration
method for solving Yoshioka’s coupling equations based
on the Bloch-wave approach, which assumes the periodic
structures of the crystal. So far, there is not a method
available which can solve the Yoshioka’s coupling equa-
tions for a general solid structure considering all the pos-
sible transitions.

In this paper we present a new theoretical approach
which can solve the coupling Schrodinger equations for a
non-periodic crystal by considering all the possible transi-
tions. The detailed theories will be developed for calcu-
lating (a) the energy-filtered-plasmon energy-loss
diffraction patterns and images in the geometry of
reflection electron microscopy (REM), (b) the energy-
filtered diffraction patterns from atomic core shell losses,
and (c) the contribution of thermal diffuse scattering
(TDS) to the high-angle annular-dark-field (ADF)
scanning-transmission-electron-microscopy (STEM) lat-
tice images. An ‘“‘incoherent” imaging theory will be de-
rived for simulating ADF STEM images and some calcu-
lated results will be presented for Ge/Si(100) interfaces.

II. MULTISLICE APPROACH TO ELASTIC
SCATTERING: AN INTRODUCTION

The multislice method, as a dynamical theory for cal-
culating high-energy electron scattering in a crystal, has
been very successfully applied in imaging simulations of
high-resolution transmission electron  microscopy
(HRTEM). This theory was initiated by Cowley and
Moodie!! based on the physical-optics approach. This
theory was shown to be equivalent to quantum mechan-

ics.'»13 For the convenience of our discussion, it is
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necessary to review this theory.

Assuming a crystal is cut into slices in the direction
perpendicular or almost perpendicular to the incident-
beam azimuth, for a high-energy electron beam of about
100 keV, by neglecting the backscattering of the electrons
from each slice with use of the small-angle approxima-
tion, the elastic wave going into the mth crystal slice and
coming out of the slice (see Fig. 1) is related by Eq. (1),!!

D +1(B)=[1,,(b)go(b)] % Py(b) , (1a)

where b=(x,y) in the slice plane, g, is the so-called
phase-grating function of the slice, * indicates a convolu-
tion operation, and P is the propagation function of the
wave in the vacuum for a distance Az =z, , ;—z,,,

Z=2m
go(b)=exp [iaofzzz Y4z Ub,2) |, (1b)

where U is the atomic potential distribution in the space,
which can be different for different atomic layers,

Py(b)= exp(iTh?/AyAz) , (1c)

1
and

__7
AVo

oo (1d)
Ag is the wavelength of the electrons with energy E; and
V, is the accelerating voltage of the microscope. Equa-
tion (1) is the exact solution of the Schrédinger equation
after neglecting the back scattering when Az approaches
zero.'>13

The multislice theory described by Eq. (1) has one of
the greatest advantages, that is, the atomic arrangement
within a slice or in different slices can be in arbitrary ar-
rangement, so that the theory can be easily applied to ap-
proach any crystal defects and imperfections in the
different scattering geometries. This theory has been ap-
plied currently to simulate the high-resolution
transmission-electron-microscopy images, convergent-
beam electron diffraction (CBED) patterns [Fig. 2(a)],!*
surface profile images in HRTEM [Fig. 2(b)],"
reflection-electron-microscopy (REM) images, and

z=7,

Ym+1(b)

FIG. 1. A schematic diagram illustrating the elastic wave be-
fore and after transmission through a crystal slice.
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FIG. 2. Application of the multislice theory for simulating
(a) the atomic high-resolution transmission electron microscopy
(HRTEM) images and convergent beam electron diffraction
(CBED) patterns, (b) profile images of surface atomic recon-
structions in HRTEM, and (c) reflection electron microscopy
(REM) images and reflection high-energy electron diffraction
(RHEED) patterns.

reflection high-energy electron diffraction (RHEED) pat-
terns at glancing-angle incidence [Fig. 2(c)].!%!”

To demonstrate the beauty of this theory, Fig. 3 shows
a simulated large-angle convergent-beam electron
diffraction pattern (LA CBED) pattern of Si(100). The
incident-beam disk is chosen so large (with half conical
angle 3°) that the interference of the electrons gives the
nice Kossel pattern of the crystal, which is obviously re-
lated to the crystal structures. This theory gives the con-
venience of tracing electron scattering depth by depth,
then its scattering process can be captured.
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FIG. 3. Simulated large-angle convergent beam electron
diffraction LA CBED Kossel pattern of Si(100) for 100-kV elec-
trons, with half-conical angle 6° and specimen thickness 271.5
A.
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As limited by the basis of Eq. (1), however, it is only an
elastic scattering theory, no inelastic effect is included in
the calculation. Then it cannot be applied to simulate the
diffractions of electrons in thicker specimens, which usu-
ally involve a large amount of inelastic scattering. Elec-
tron inelastic scattering is usually classified as three
different processes. Plasmon (or valence) excitation,
which characterizes the transitions of electrons from the
valence band to the conduction band, involves an energy
loss in the range of 5-30 eV and an angular spreading of
less than 0.1 mrad for high-energy electrons. More than
half of the electrons will loss the energy of a plasmon if
the specimen thickness is larger than about 500-1000 A.
This inelastic process is considered as a nonlocalized col-
lective excitation of the electrons in the solid. Atomic
core-shell excitations is the second process, which intro-
duces an energy loss in the range of a few hundred to
thousands of eV with an angular spreading of an order
0y =AE /2E,, where AE is the electron energy loss and
E, is the incident electron energy. This process is con-
sidered as the localized excitation and happens only when
the impact parameters of the electron are in the size of a
subatom. Thermal diffuse scattering (TDS), as the other
inelastic process, does not introduce any significant ener-
gy loss (less than 0.2 eV) but produces large momentum
transfers, which scatters the electrons to higher angles
and form Kikuchi lines after further elastic scattering.
This process is associated with the vibration of crystal
lattices.

It seems that these different inelastic processes have
different characteristics, each of them arises from the
different interaction of the electrons with the solid. To
contain all these effects in the calculations, we need to
consider a generalized interaction of an electron with the
crystal and the associated scattering. It is necessary to
derive a generalized multislice approach for electron
diffraction and imaging. This is the purpose of Sec. III.

III. GENERAL SOLUTION OF THE YOSHIOKA’S
COUPLING EQUATIONS IN THE MULTISLICE
SCHEME

To approach the inelastic scattering properly, one fol-
lows Yoshioka’s method for deriving the coupling equa-
tions, which describe the transitions of the electrons
among different states of the crystal. When one considers
the interaction of an incident electron with a solid, the
Schrodinger equation of the system is

ﬁZ

mg

V2+H.+H' |b=Ed, 2

where —(#2/2m,,)V? is the kinetic energy of the electron,
H_ is the crystal Hamiltonian, and H’ describes the in-
teraction between the electron and the solid,
&d(r,r},...,ry) is the wave function of the system,
which depends on r, the coordinates of the incident elec-
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tron, and on ry, . .., r,,, the coordinates of the electrons

and ions of the crystal. Neglecting exchange effects one

can write
®(r,1y, ...

JIp) = a,(ry, .., (1), (3)

where a,, is the wave function of the crystal in its nth ex-
cited state of energy €, so that

H.a,=¢,a, . 4)

¥, in Eq. (3) describes the elastic scattered wave of en-
ergy E,=E and V¥, describes the inelastically scattered
wave of energy E, =E —¢,, withn =1,2, ..., m. Substi-
tuting Egs. (3) and (4) into Eq. (2), multiplying by a,f, and
integrating over the coordinates ry, . . . , T, One obtains,

2 2 — 2m0 ’
(Vi+ko¥o=3 "ﬁTHom(f)‘I’m ) (5a)
2 2 — 2m0 ’
(V +kn)\lln—2 7 H,, (r)V¥, , (5b)
m
where
2m0
k3= ﬁ2 E" ’ (SC)
and
H,,= [arH'a,dr, ... dry . (5d)

These are the Yoshioka’s coupling equations for inelastic
scattering. The summation of m is for all the excited
states and the ground state. Our goal is to find the mul-
tislice solution of these equations. For convenience of the
analysis, we write (5a) and (5b) in the matrix form

Yo kg¥o Ho Ho Hom
v ‘Ifl + k%.\lll =2m0 IJ.IIO H’n im
: : # : : :
¥ k¥ H,y H, ' H,,
¥o
¥,
X1 |- (6)
\I’m

Equation (6) is an inhomogeneous equation. The H' ma-
trix is a mXm transition matrix. By defining
¥, =exp(ik,-r)¢,, using the Green-function method,
and assuming €, << E;, (6) can be written in the form of
(7) (see Appendix A),
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¢o(r) F(r—r'k,) 0 0
¢y(r) m 0 F(r—r'k,) --- 0
: =I_f Ozdl" : : :
: At : : :
¢ (1) 0 0 -+ F(r—r,k,,)
Hy(r') Ho(r') -+ Hp,(r') | [g(r')
Hiy(r') Hiy(r') -+ Hi (') | |o(r)
X . . . . : , (7a)
Hoo(t) Hypy(r') -+ Hpp(£') | |$m(F)
where I is an “‘unit” matrix defined as
1
1
I={.1. (7b)
1
F is defined as
expli(k,|r—r'|—k,-(r—r1'))]
F(r—r',k,)= . (7c)

[r—r'|

When the high-energy electron scattering satisfies the conditions (i) @ << 1, where a is the scattering angle, this is called
the small-angle approximation; and when it satisfies (ii) |[r—r'| =z —z’, this is called the nondeflection approximation.
Neglecting the back scattering, condition (ii) is equivalent to

lb—b'|?
"2Az—2z")
Here b=(x,y) and b'=(x",y’).
By introducing a propagation function as defined in Eq. (8b), (7a) becomes

k,lr—r'| =k, (r—1' )=~k

®o(b,2) Py(b—b',z —2z’) 0 R 0
¢,(b,2) ; s 0 P,(b—b',z—2z') - 0
: =I+ °,Tvlff,=_m : : : :
¢.(b,z) 0 0 -+ PL(b—b,z—2')
Hyo(b',2") Hpi(b,2°) -+ Hop(6,2°) | [ §o(b',2")
Hi,(b',z') Hy(b,z') --- Im(d52") | | ¢4(b',2")
X : : : : . db'dz’ | (8a)
Hyo(6',2') Hpy(0,2°) -+ Hy,p(6,2') | |$,(62°)
where P, is defined as a propagation function of the electrons with energy E,,
1 imh?
P,(b,Az)= A Az exp naz | (8b)

A, is the wavelength of the electron with energy E, and v is the velocity of the electron with energy E.

Equation (8a) is an integration equation. In order to find out the multislice solution of this equation, one needs to
derive the relationship between the waves ¢,(b,z,) going into a crystal slice at z =z, and those ¢,(b,z) after penetrat-
ing through the slice at z =z if Az =z —z;, is very small. Now one considers the nth row of the Eq. (8a),

6,(b,2)=1+

~ﬁiv ff:jwp,,(b—b',z—z')§H,;,,,(b',z')¢,,,(b’,z’)db'dz'

— i z“=zo ”n " ’ ”n ”n " ” ”n ”n
=1+ [—%; ]ffzuz_mP,,(b—b Z—z )%H,,m(b ,2"),,(b",z")db"dz

i z'=z
—_— — T J— ’ ’ ’ ’ ’ ’ ’ . 9
+ [ . “fz,=zop,,<b b,z—z )%‘,H,,m(b ,2')$,,(b',z')db'dz )
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By using the properties!?
[ P,(b,2db=1,
P,(b=b,z—2)= [ P,(b=b"z =2")P,(b"~b,z"—2')db" ,

where X is a plane positioned at z'’ between z and z’, Eq. (9) can be rewritten as

$a(b,2)= [ |1+

_ i
fiv

+

i = ’ , , , , o
W ff;;”n(b‘b’z—z )§Hnm<b,z )b, (b',2")db'dz" .

Comparing the first term in (11) with Eq. (9) for z =z, then (11) can be written as

$,(b,2)= [ P,(b—bg,z —2,)8,(bg,zo)dby+ |— —ﬁ’;

In order to solve Eq. (11), one expands ¢,, in the order of (—i /),

L
M(b,z) .

0

¢,(b,2)= 3

L=0

_

fiv

By inserting (13) into (12), and by equating the coefficients of (—i /#iv)F, one gets
f57(0,2)= [ P,(b—by,z —20)$,(bg,zo)dby ,

f{"’(b,z)=fff'_z’P,,(b—b',z —2)3 H,, (b',2")fi™, (b, 2 )db'dz’ .
z —'ZO m

[ ff'f’P,,(b—b',z —2z')S H,,,(b',2")4,,(b',2")db'dz’ .
z '—20 m

(10a)
(10b)

"=z
[ [ Pby=b",20—=2") 3 H,,(b",2")$,,(b",2")db"dz" | P, (b—by,z —zo)db,
Z'=— m

(1n

(12)

(13)

(14a)
(14b)

If H,,, varies slowly in the region of Az=(z —z,), and also k,=k,, then the solution of (14) can be proven as (see Ap-

pendix B)
fi2(b,2) Py(b—by,Az) 0
bz) | 0 Pi(b—by,Az) - 0
S R LY : : : :
fim(b,z) 0 0 -+ P, (b—byAz)
L
hoo(bg,Az)  hgy(bg,Az) -+ hg,, (by,AZ) | [ @y(by,2q)
hio(bp,Az) hiy(bg,Az) -+ hi,(byAz) | |(bgz)
X . . M . . ’
h,’no(bo,Az) h,,"](bo,Az) h;nm(bo,Az) ¢m(b0120)

where A, is defined as
= fZZH,:m(b,z’)dz' )

Equation (16a) can be written in a form of (16b) for (z —z4)—0,
h,,=~H,,(b,z')Az .

Combining (15) and (13), one gets the result shown in (17),

(15)

(16a)

(16b)
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do(b,2) Py(b—by,Az) 0 cee 0
¢1(b,2) 0 Pl(b—'bo,Az) tet O
: =f db, : : :
¢,,(b,2) 0 0 P, (b—by,Az)
h(l)o(boaAZ) hz)l(bo,Az) hém(bo,AZ) ¢0(b0,20)
h'lo(bo,AZ) hlll(bo,AZ) hllm(bo,AZ) ¢1(b0,20)
—— . . . . 17
Xexp P, : : : an
Bpo(bo,Az)  h,, (by,Az) By (b0, A2) | | |@m (bpyZo)

Equation (17) gives a general relationship between all the elastic and inelastic waves before and after penetrating a crys-
tal slice. The exponential matrix indicates the multiple scattering of the electrons among all these states, the Lth-order
expansion term of the exponential matrix described the Lth-order multiple scattering. Equation (17) is actually the
multiple elastic and multiple inelastic scattering of the electrons in the crystal, which is essentially a theory of Kikuchi
patterns. It can be shown that the total electron intensity before and after penetrating a crystal slice governed by Eq.
(17) is conserved (see Appendix C).

In order to get some simplified results, we consider the first-order approximation of (17). Assuming IH,,,,, | << IH,mI
and o |H,,m | << 1 for n#m, with o0 =1/%v, then the exponential term of the matrix can be written as a summation of a
diagonal matrix and a nondiagonal matrix,

hogg O -~ 0 0 hy - hy,
N I
exp(—io[ -+ ])=exp lio . . .+ . . . (18)
0 0 h"nm h;no hr’nl tet 0
Using the approximation of hog~h}, = -+ =h,,,, the first matrix is an unit matrix, so that the commutation relation-

ship holds, then

exp(—iohy) —iohgyexp(—iohgy) —iohg,exp(—iohy)
exp(—io[ - D= : : : : . (19)

—ioh, exp(—ioh,,,) —ich, exp(—ich,,,) exp(—ioh,,,)

Inserting (19) into (17), one has

exp(—iohgy) [qbo(b,zo)—-ia S hoada(b,zg) | | %P,
#otb,2) (—iohly) [¢y(b,zy) '#Oh' (b,zy) | | %P
é,(b,2) [CXP tohy, [¢1 120 lanél 1n®a(b,zo H* 1
. = : . (20)
&,(b,2) exp(—igh,,,) [d)m(b,zo)——ia > h,’,,,,¢,,(b,zo)] ]*Pm
n¥m

ing of the incident inelastic wave in the slice; the 4,,,
terms are the transitions from the other states, including

The physical meaning of Eq. (20) can be described as
follows. For the elastic scattered wave ¢, the first term

is the phase grating result of the crystal slice, which is the
elastic penetration of the incident elastic wave. The
terms containing hg, are the “transitions” of the elec-
trons from the excited states to the ground state. This is
effectively the virtual inelastic scattering process in elec-
tron diffraction, i.e., the electron loses energy first (inelas-
tic scattering) and then regains the same amount of ener-
gy to become ‘‘elastic” again. This process can be
characterized by a complex correction potential related
with the dielectric excitation property of the solid.® For
the excited states, ¢,, the first term is the elastic scatter-

the ground state, to the nth excited state. This term can
be considered as the generation of the inelastic wave
when the electron penetrates through the slice. Also it is
obvious that Eq. (20) reduces to the multislice formula of
elastic scattering, Eq. (1), if all the inelastic transitions
vanish, i.e., A,,, =0 for n*m.

If one knows the elastic incident wave before the elec-
tron strikes the crystal entrance surface, then all the gen-
erated elastic and inelastic waves after the first slice can
be calculated through Eq. (20). Then these waves can be
taken as the incident waves for the second slice, the
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waves after penetrating the second slice can also be calcu-
lated through Eq. (20). So all the waves after penetrating
through the crystal can be obtained. This is the principle
how the multislice theory works.

IV. SPECIAL CASES OF ONLY ONE
EXCITED STATE

Let us consider a case of only one excited state. This
case happens in most plasmon excitation and single-
electron excitations. The crystal can be considered as ei-
ther in its excited state or in its ground state. By taking
m =1, through some algebra, Eq. (17) reduces to the fol-
lowing forms:

do(b,z)= |exp(—iohgy) [cos(aih'lol )do(b,z)
h'

—isin(olh'10|)—f)—l
1Ayl

X (b, 2,) ] (21a)

*Py;
,(b,2)=|exp(—ich!,) [cos(olh;o|)¢,<b,zo)

hio

—isin(o|higl)——
10 Ih’m!

x¢o(b,20)

]*P, . @21b)

Now one can apply Eq. (21) for plasmon losses and
single-electron excitations.

A. Case 1: Energy-filtered electron images
after exciting a plasmon

In Eq. (21), since

_ (alhol?
2

_ (Ulh'lo‘)z -

' ~1
cos(a|hipl) 5

for o|h}y| <<1, then we can define an absorption func-
tion u as given by (22a) and an electron inelastic mean-
free path A as given by (22b),

(b )——————(‘Tlh""“2 (22a)

Ul o,z ’ a
_ 1

A(b,zo)——-——#(b’zo) . (22b)

After neglecting the transition of the electron from its ex-
cited state to the ground state, then (21b) can be written
as

é,(b,z)= [exp(—iah'“) exp —Ezéi ¢,(b,zy)
_iah,10¢0(b,20) *Pl . (23)

In (23), the exp( —pAz /2) term describes the absorption
effect from the inelastic scattering. For plasmon excita-
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tions, h;; may be taken as a product of a complex con-
stant with a real function. In addition using ho,=~h1,
then Egs. (19a) and (23) can be written in the form of (24)
after a proper choice of the constant phase factor of the
wave function ¢y,

do(b,2)= [q(b) exp —f% do(b,zo) | |#Py;  (24a)
,(b,2)= [q(b) exp —f%z— #,(b,2)
A 172
+ Tz bolb,zo) | {%P, (24b)

where ¢ (b) is defined as the slice transmission function,
which is essentially the same as that defined in Eq. (1b),

g(b)=exp(—ichgy) . (24c¢)

Equation (24) is the exact form of the theory proposed
by Wang,'®!® based on the physical-optics approach, for
calculating the energy-filtered inelastic images. The term
Az /A is the probability of generating the plasmon loss
while the electron traveling through the slice. This
means that the electron energy loss is a mean process de-
pending on its average traveling distance.

Since plasmon excitation is a process of nonlocalized
excitation, the mean-free path of plasmon losses does not
depend on the excitation position of the electrons
through a thin uniform foil in the TEM geometry. The
Az /A term can then be taken out of the calculation as a
constant. The propagation of the electrons after plasmon
loss is then almost identical to the elastic scattered elec-
trons. The energy-filtered plasmon-loss images then will
preserve the same contrast as that of the elastic scattered
electrons in TEM. This agrees with what Howie’ ob-
tained using the Bloch-wave approach.

In REM geometry [see Fig. 1(c)], however, the situa-
tion may be different. Since the excitation probability of
a surface plasmon is a function of the distance of the elec-
tron beam from the surface, the spatial variation of the
Az /A term becomes important. A is derived for a planar
interface formed by two semi-infinite media g and b by
use of the relativistic dielectric excitation theory?® when
an electron is traveling parallel to the interface at a dis-
tance x from the interface in medium b. For a narrow
energy filter that allows only those electrons which have
lost the energy of a single plasmon (E,) in the energy-loss

P
range E,-A/2 <AE <E,+A/2 to pass, then

d’P(w,q,,X)
dwdqy

1 _ Ep+A/2 q.
Alx,A) fEP—A/2 da)fo dq,

with

, (25a)

d*P(o,q,,x) g2

l —ﬁzeb
do dqy 27T2€0ﬁl) 2

€pQp

Im |F(q,,x)—

(25b)

where By=v/c, al , =q}+(w/v)X(1—B€, ), v is the ve-
locity of the electron, €, and €, are the dielectric con-
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stants of media g and b, respectively, which can be taken
as the optical-measurement data for bulk materials. g, is
a scattering-angle cutoff of the plasmon scattering in the
reciprocal space. The quantity F(g,,x) in Eq. (25b) is
given as

Za%(fa “Gb)

F(q,,x)= +(a, —a,)(1—€,B3)

€,a, t€,a
a%b b“%a

(—2a,x|)
S EXP(—2a, x|

Gbab(ab +aa) ) (250)

The calculations according to Egs. (24) to Eq. (25) in
the REM geometry has been reported before.!®!® It is
shown that the different excitation processes, such as sur-
face plasmon and volume plasmon, are created at
different depths from the surface. The energy-filtered im-
age of those losses will give the excitation information of
different levels from the surface. Also, the diffraction
patterns formed by these plasmon losses show different
intensity distributions, which can affect the imaging con-
trast.

B. Single-electron core-shell excitations

In electron diffraction, another inelastic process is the
single-electron excitation, during which an electron is ex-
cited from one bound state to another, such as the transi-
tion of a 1s electron to an ionization state, which is called
the K-edge loss in electron energy-loss spectroscopy
(EELS). This single-electron process is closely related to
the electronic structures of each individual atoms, the
solid-state effect can be taken as a second-order approxi-
mation. Equation (21) can be applied to calculate the in-
elastic wave arising from single-electron core-shell excita-
tions.

The transition matrix of an inelastic transition from
the ground state to the nth excited state can be written as
Eq. (26),7

H,(r,q)=exp(—iq-r) > H %xplig'r) , (26)
g

where q is the wave vector of the excitation created in the
lattice. g is a vector in the reciprocal lattice. For single-
electron excitation, it is possible to use the tight-binding
approximation for calculating HJ™. 2 Following the
mathematical procedures given by Landau and Lifshitz,?!
one gets

J

df 256AE(Q'+K} /3+ 1 )exp(

—20'/Ky)
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2 fum(8—Qq)
Hg,,,,,: 41e m\8 2q ’ (27a)
V. lg—dl
where
fum(K)={(nlexp(—iK-r)|m) , (27b)

and |n ) and |m ) are the normalized one-electron atomic
wave functions. V is the volume of the atom. By consid-
ering the contributions of all the atoms in the unit cell lo-
cating at R; (j =1,2,...) to the matrix element at posi-
tion r, and make use of Eqs. (26) and (27), then

41Te 22 am(8—q)

g J lg Q|2

nm(r7

Xexp[i(g—q)-(r—R;)], (28)

where V, is the volume of the unit cell. Equation (28)
gives the transition matrix of exciting a single electron
from the mth state to the nth state with a momentum
transfer q, which is confined in the first Brillouin zone.
By expanding the summation of q into the whole recipro-
cal space, one gets

(q) )
expliq-(r—R;)]dq . (29)

Sim
H,,(1)=4re?3 [ ==
J

Equation (29) gives an expression of the transition matrix
elements of a single-electron excitation under the tight-
binding approximation. The general calculation of f7,
involves complicated many-body theory. However, un-
der reasonable approximation, the element f7,  can be
calculated based on hydrogenlike model for some light
elements, such as C-K and Si-L ionizations. The f,,, can
be directly evaluated from the generalized oscillating
strength (GOS), i.e.,??
172

| fom

Eg+A d
| R AR L (30)

~9% | AR dAE |

where #=13.6 eV is the Rydberg energy, a, is the Bohr
radius, df; /dE is the GOS per unit energy and Ey is the
threshold energy of the ionization edge, A is the width of
the energy-loss window, and AE is the electron energy
loss. The analytical expression of the GOS for the K
edges of hydrogenhke atoms is given in Eq. (31) for
AE > Z!R, where Z,e is the effective nuclear charge:?>2*

dAE  Z*R[(Q'—KZ+172+4KEP[1—exp!

where ©'=arctan '[2K, /(Q'— K} +1)],

Q'=(qay/Z,)? (31b)

and

—2m/Ky)]’

(31a)

[

Ki=AE/(Z!R)—1. (31c)

Similarly, the f,,, for L-edge ionization can be calculated
based on the hydrogen model if one neglects the phase
factor.2* The calculation results for single-electron exci-
tation is given in Sec. VI A.
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V. THERMAL DIFFUSE SCATTERING

A. General theory

Thermal diffuse scattering (TDS) involves many excit-
ed states of different momentum transfers but the transi-
tion probability of each is very small. In this case, one
can neglect the inelastic transitions among all these excit-
ed states, and also consider the fact that the TDS process
does produce large amounts of momentum transfer but
almost no energy loss. Then Eq. (20) can be simplified as

do(b,z)= | exp(—ichg)

X [¢o(b,zo)—ia né‘,oh(',,,(ﬁ,,(b,zo)] *P,,
(32a)
é,(b,z)={exp(—iochy)[ ¢,(b,zy)
—iohodo(b,29)]} Py . (32b)

Equation (32b) considers only the single phonon process
and the multiple inelastic scattering is neglected.

In scanning transmission electron microscopy (STEM),
the thermal diffuse scattered electrons of different
momentum transfer are added incoherently in the
diffraction plane (i.e., the detection plane). Since the nth
excited state in TDS indicates a process of definite
momentum transfer, which is a point in the first Brillouin
zone and there is no overlay among these points, the elec-
trons of different momentum transfer in TDS can be add-
ed coherently in real space, because there is no interfer-
ence between them after converting back to the recipro-
cal space. By defining a total TDS wave ¢7 as a coherent
sum of all the TDS waves of different momentum
transfers,?’

$7=3 6, - (33)
From Eq. (6), one has
$T(b,2)= [exp( —ioghy)

X *P, ,

$T(b,z,)—ic [2 hlo ]dbo(b,zo) ]

(34)

where the summation over n means the summation of the
TDS waves of different momentum q. Now we determine
the transition matrix element h,, for the case of TDS.
Based on quantum-mechanical theory, Takagi?® gave a
perturbation potential of phonon scattering in a monoa-
tomic crystal,

U(r)=—if > (7 A;)f (r)explit-(r—R;)ld7, (35a)
J

where

f(T)=lev(r)exp(—i'r-r)dr s

35b
2r)? (350)
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v(r) is the atomic potential and M is the Debye-Waller
factor,

M(r)=1{(r-A;)P), (35c¢)
where the sum over j is taken over all the atoms in the
crystal and 7 is a continuous reciprocal lattice vector.
The angular brackets denote the time average of the cor-
responding quantity. Expressing the lattice displacement
A; in the normal modes with wave vector q (restricted to
the first Brillouin zone), frequencies w(q,t), polarization
unit vectors €t (where t =1,2,3 denotes the three per-
pendicular polarizations), using the results of Howie’ and
Whelan?’ and assuming the validity of the Einstein mod-
el, one has

® vV )
S Hyy=—iedA——= 33 3 e'#797(g—q),
n=1 (277') t q g
XVy_,e Me&"9  (36a)
and
1/2
#i 1
m— +1 , 36b
V' 2kz0:M,N |exp(6g/T)—1 (36b)

where V, is the coefficient of the Fourier expansion of the
lattice potential, M, is the atomic mass, N is the total
number of atoms, and ¥V, is the volume of the crystal.
0 =%w/ky is the Einstein temperature and kp is the
Boltzman constant. It is noted that A goes to zero if N is
very large. This is the result of conservation of energy,
because the energy lost by the incident electron, iw,
equals the total vibration energy of the N atoms. Actual-
ly A describes the average vibration amplitude of the
atom. The sum over q in (36a) is on the two-dimensional
array of states on the surface o' for which energy and
momentum are conserved (in practice the Ewald sphere).
The calculation of (36a) is actually a function of incident
beam direction. In the first-order approximation, the ra-
dius of the Ewald sphere can be taken as very large, so
that the surface of the sphere is approximately a plane in
the first Brillouin zone. If the incident beam direction is
chosen as z axis, then the double sum of ¥, ng Egy is

actually an integration in the whole reciprocal space for
T=(8, —94x,8, —q,) parallel to the x,y plane. In the mul-
tislice approach, atomic vibrations in the z direction (in-
cident beam direction) will not make any contribution to
the electron angular spreading in the diffraction plane.
Then the polarization direction e,, can be related to the
x and y directions but with arbitrary time-dependent
phases of @, and a,, because each atom is considered to
vibrate independently in the x and the y directions. The
time average of @, (or a,) is zero. Through the inverse
Fourier transform, Eq. (36a) can be changed to (37),

& v . _a_ . ___a__ ’
n§1 h, eA |explia,) o +explia,) 3 V'(b,Az) ,
(37a)

where V' is the integrated crystal potential within the
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slice along the beam direction, including the thermal
correction,

V'(b,Az)= [ V'(b,2)dz . (37b)
%o

Finally, inserting (37a) in (34) and considering the pertur-
J

¢7(b,2)= [e""OV""’A’" l¢T(b,zo)+iaoA explia, )2 0

+exp(1a )%
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bation result of the TDS to crystal potential H, e.g.,
adding a Debye-Waller factor in the crystal potential, the
relationship between the total TDS wave before and after
penetrating a crystal slice is given by Eq. (38), with
oy=eo,

V,(b,AZ) ¢0(b,20) (38)

For the elastic scattered wave, an absorption factor needs to be introduced in order to characterize the absorption

effect. One can approximately write Eq. (32a) as (39),

2
ioyV'(b,A2)
do(b,2)= le 0 exp

—a—V’(b,Az)

_U(ZJAZ ox

Equations (38) and (39) outline the main formula for
calculating TDS waves in a monoatomic system, which
are the same as the equations derived by Cowley?® based
on the physical-optical approach. For a complicated sys-
tem consisting of several types of atoms, (38) and (39)
may be generalized as

#T(b,z)={q(b)[$7(b,zy)+ G (b,zy)do(b,z()]} * P, , (40a)

do(b,2)=[q(b)dy(b,zy) 1% P, , (40b)
with
G (b,z,) 1002 A exp( tax]) +A yexplia,j E?y
Xvi(b—R;,Az) (40c¢)
and
q(b)=exp |iogyV'(b,Az)
2
-0} zij—v (b—R; Az)
2
+2}‘, ¥y v(b R;,Az| |/2
(40d)

Here v;(b—R;) is the crystal potential of the jth atom lo-
cated at R; in the (x,y) plane; A, and 4, indicate the
mean displacements of the atom in the x and y directions,
respectively; g (b) is a defined phase-grating function of
the crystal slice including the absorption effect; al and
o), are the time-dependent phases of the x and y vibra-
tions of the jth atom. This assumption of independent x
and y components of the vibration should however be
adequate for most cases. This random phase treatment
may give a better approach to the independent vibrations
of each atoms.

It is necessary to point out that the generalized Eq.
(40a) has broken one assumption of the Einstein model,
which is that each atom may vibrate with different energy

(b,Az)

bo(b,z,) | %P, . (39)

1

determined by the vibration amplitude 4; of the atom.
As pointed out by Cowley,?® however, the phase correla-
tions between the atomic vibrations do not affect their
image but their diffraction pattern, because the image of
each individual atomic column is not affected by the vi-
bration status of another column of atoms under the
first-order approximation. Therefore, the theoretical
treatment whether based on the Einstein model or any
other models, such as Debye model, will not affect the
image simulation.?

B. Simplified “incoherent” imaging theory
for ADF STEM images

Recent instrumental progress has made it possible to
obtain atomic resolution lattice images using the high-
angle scattered electrons in a scanning transmission elec-
tron microscopy (STEM) if a small probe, less than the
size of the unit cell, is used.>*3! These images are called
the annular-dark-field (ADF) STEM images and are sen-
sitive to the atomic numbers of the atoms, because the
large-angle scattering can be roughly taken as the scatter-
ing from the nuclear. Then it is feasible to make chemi-
cal identification of atomic sites using this technique.

The simulation of the ADF images, however, cannot
be approached using the elastic scattering theory, because
the large-angle scattering comes mainly from thermal
diffuse scattering (TDS).?>*® The random thermal vibra-
tions of the atoms make this process as an incoherent ex-
citation. Equation (40) should be the full dynamic theory
for TDS if the elastic waves generated from each slice are
added incoherently after penetrating through the crystal.
This means that each individual TDS wave created from
a different slice has to be considered as a separated
streak, which will be elastically scattered through the rest
of the crystal individually. In practice, this process takes
a huge amount of calculation, which becomes even im-
possible for a thick specimen. Then it is necessary to
seek a simplified theory which can give reasonable accu-
rate results but with much less calculation. This is the
goal of Sec. VB 1.
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1. Case I: No elastic scattering after the TDS

Equation (40) can be simplified if the elastic scattering
of the electrons after being inelastically scattered is
neglected. This is a good approximation for thin speci-
mens. In this case, the TDS wave generated from each
slice should be added incoherently and the change of the
electron angular distribution after TDS, if any, is limited
to the ADF detector range. This is a reasonable approxi-
mation when the detected signal is given by the integra-
tion of the intensities over a wide-angle annular detector.
Then the intensity detected by the ADF detector for a
probe, centered at b, =(x,,y,), may be written approxi-
mately as Eq. (41) in the single-phonon excitation model:

1(6,)=3 [|A¢I(u,b,)1D (w)du, (41)

where AgT is the TDS wave generated from the nth slice
J
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(at depth z,=nAz) after converting to the reciprocal
space, u=(u,,u,). The summation n means the in-
coherent adding of intensities of the TDS waves generat-
ed from different slices, i.e., the intensity integration over
crystal thickness. From Eq. (40a),

A¢,,T(u,bp,z,,)=[G(u,z)*¢9,(u,z,,,bp)]Po(u) ;0 (42)

here ¢2 stands for the elastic wave at the nth slice and D
is the detection function of the ADF detector,

1 for u,<u<u,

D(u)= (43)

0 otherwise .
u, and u, are the inner and outer radii of the ADF detec-
tor in the reciprocal space. Inserting Eq. (42) into (41)
and use the Fourier transforms of G and ¢,, with
|P(u)|=1, one has

1(b,)=3 fd“ [qu G*(q,zn)f dbg)*(b—b,,z,)e (4TI

X [dq'G(q,z,) [ db'¢d(b'—b,,z,)e’ " ¥ D(u) | , (44)

where q and q’ are the two-dimensional vectors in the re-
ciprocal space. By introducing the inverse Fourier trans-
form of the detector function D and integrating over u,
Eq. (44) becomes

1(6,)=3 [ dbG*(b,2,)¢%*(b—b,,z,)

X [db'G(V',z,)$3(b'—b,,z,)D (b—b') .
45)

This is the detected intensity of the ADF detector for an
incident probe centered at b,. It depends only on the
elastic probe function, the localized inelastic generation
function, and the detector shape function. In practice, if
the ADF detector is large enough so that the scattering
of the electrons is still within the detector plane, then (45)
is still a good approximation.

Equation (45) can be further simplified if all the TDS
electrons are treated incoherently and totally collected by
the detector or if the signal collected by the detector is
assumed to be proportional to the total TDS scattering.
Under this assumption, the elastic Bragg scattering of the
electrons after the inelastic scattering (TDS) will not have
any effect on the STEM image simulation. Taking the
detection function as a unity, i.e., D(b—b")=8(b—b’),
then from Eq. (45)

1(b,)=3 [db|G(b,z,)2|42(b—b,,z,)2
=3 1G(b,,z,)I**[¢3(b,,z,)|* . (46)

This result is exact if the ADF detector detects all the in-
elastic scattered electrons even for thick crystals. |G|? is
effectively the scattering cross section of the inelastic pro-

[
cess and |¢%|? is the distribution of electron current den-
sity at depth z, determined by (40b). The summation of n
actually is equivalent to the intensity integration over
crystal thickness.

For very thin objects, Eq. (46) can be connected with
incoherent imaging theory in optics. [¢2|* can then be
equated to the modulus square of the impulse response of
the lens (i.e., the intensity distribution of the image of a
point object), and G is the transmission function of the
object.*

2. Modified generation function method

To make a better approximation taking into account
the size of the detector in Eq. (46), we try to introduce a
modified generation function, which is defined by (47). In
the reciprocal space

G(u,z) for u,<u<u,

G ooy (U,2)= 47

0 otherwise .

This newly defined inelastic generation function drops the
Fourier components falling out of the angular range of
the ADF detector in the reciprocal space and picks up
those remaining. Then the detected intensity can be ap-
proximately written as

1(b,)=3 [dulG,(u,z,)%¢%(u,z,,b,)P(w)|>. 48

Compared with Eq. (41), we have dropped the detection
function D, which is contained in the defined new genera-
tion function [Eq. (47)]. Following an analysis similar to
that in Sec. V B 1, one has
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1(6,)=3 [db|G,.,(b,z,)%¢3(b—b,,z,)|?
=3 [Grew(b,,2,) % [¢3(b,,2,)]2 . (49)

Compared with Eq. (45), Eq. (49) significantly simplifies
the numerical calculation. Equation (49) still holds if the
inelastically scattered electrons are elastically scattered to
produce Kikuchi patterns within the detector angular
range.

It is important to note that the STEM imaging intensi-
ty is a convolution of the probe intensity distribution
with the square of the inelastic generation function,
which is proportional to the scattering cross section of
the inelastic process. Then the phase of the generation
function drops out. This will provide a great advantage
for practical numerical calculations, because the phase of
an inelastic transition matrix element is always unknown
either theoretically or experimentally. From Eq. (40c),

2

a ”n
|G pew(D,2) 2=a(2,2 |4, I? F) (b—R;,Az)
J
5 2
+|Ajy|2 5;0}'(b—Rj,Az)
Xexp[ —u(b)Az] . (50)

v"” is the atomic potential centered at position R; after
taking the Fourier components out of the angular range
of the detector. It is important to note that the phase
coupling of the atomic vibrations drops out in Eq. (50).
Then the image simulation will not be affected by assum-
ing the Einstein model, the Debye model, or any other
model. This is one of the greatest advantage of the in-
coherent imaging theory. The accuracy of simulating
ADF images using Eqgs. (46) and (49) will be examined in
Sec. VIB 1.

The contribution from pure elastic scattering to the
ADF image, after penetrating through the crystal (the
Nth slice), can be expressed as

T (b,)= [ du|F(4%(b)2D (u) , (51)

where ¥ denotes the Fourier transformation of x and y.
Then the total detected intensity at position b, is a sum-
mation of TDS [Eq. (49)] with the elastic scattering [Eq.
(51)].

VI. CALCULATION RESULTS

A multislice program for simulating HRTEM images
is modified to perform the inelastic calculations. The
program flow chart is given elsewhere.’? In the simula-
tion, a large supercell is chosen in a dimension of 4040
AZ, which is separated by 256 X256 pixels. The supercell
has to be large enough so that the electrons cannot be
scattered out of the cell. The slice thickness is chosen as
half of the atomic unit cell, i.e., 2.715 A for Si(100). A
coherent incident electron probe is assumed for the fol-
lowing calculations.
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A. Simulations of the energy-filtered core-shell
loss diffraction patterns

It has been reported by Reimer®> that the energy-
filtered diffraction patterns from core-shell losses can be
obtained in a specially designed electron microscopy.
This achievement makes it possible to investigate the in-
elastic scattering processes of different mechanisms. In
this section, one uses Eq. (21) and Eqgs. (29) to (31) to
simulate the energy-filtered L-edge diffraction pattern of
Si(100).

In dynamic calculations, the incoherency of the inelas-
tic waves generated from different atomic sites makes the
calculation extremely difficult. The incoherency of the
waves from different crystal slices can be treated exactly
following the method introduced by Doyle.>* That is, the
propagation of the inelastic wave generated from each
slice has to be treated as a separated stream, whose
scattering through the rest of the crystal has to be calcu-
lated individually. The final inelastic intensity is the in-
coherent intensity addition of all these individual waves
generated from different slices after elastic penetrating
through the crystal. This calculation process is rather
lengthy and time consuming. To reduce the computa-
tion, Cowley*® has suggested a method of adding arbi-
trary phases to the inelastic waves generated from
different slices, the continuous buildup of the total inelas-
tic waves are the “coherent” summation of those from
different slices with arbitrary phases, the propagation of
this total wave can be treated as a single stream. This is a
reasonable approximation only if the slice number is
large, so that the cross terms of them will cancel one with

Si(100) L-Edge CBED

FIG. 4. Simulated energy-filtered Si L-edge core-shell CBED
Kikuchi pattern for Si(100), for a specimen thickness 543 A,
beam convergence half-conical angle 12.95 mrad and the
energy-loss window A=5 eV above the L edge. This calculation
was done by adding arbitrary phases to the inelastic waves gen-
erated from different slices.
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another approximately. Shown in Fig. 4 is a simulated
energy-filtered L-edge CBED pattern, with half conical
angle 12.95 mrad, of Si(100) according to this treatment.
It is important to note that the Kikuchi patterns are
formed, which comes from the elastic scattering of the in-
elastic waves. The interference of the overlap disks gives
the nonuniform intensity distribution in the diffraction
pattern. The arbitrary phases generated by the computer
are not ideally arbitrary, which may give some phase
correlation in the diffraction pattern.

The elastic scattering of the inelastic waves produces
the Kikuchi patterns. Figure S shows a comparison of a
simulated CBED of Si(100) for the elastic scattered elec-
trons [Fig. 5(a)] and the electrons after exciting the Si L
edge and then being elastically scattered through 543 A
[Fig. 5(b)]. The nice diffraction spot is seen in the elastic
CBED pattern. The formation of Kikuchi bands is visi-
ble in Fig. 5(b), which comes from the angular spreading
of the inelastic scattering.

B. Simulation of high-angle ADF STEM lattice image
of Ge/Si interfaces

In STEM image simulation, the incident wave probe,
centered at a point bp =(xp, yp) on the specimen surface,

is defined by the objective aperture, i.e.,

do(b, onb u)exp[ —27u-(b—b,)—iW(u)]du ;
(52a)
where
Aay(w)= l+exp[(u21—u§p)/83p] (52b)
and
W(w)=mAguXC,A3u’/2—Af) . (52c)

(a) Elastic CBED
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Here C; is the spherical aberation of the objective lens,
and Af is the defocus value. §,, is a small quantity for
smoothing the edge of the aperture. In the following cal-
culation, u “0 5 A"l (18.5 mrad), V—IOO kv, C,=0.8
mm, §, ’—0 002 A~ 1 and Af =800 A unless 1t is
specxﬁed This gives a probe shape of about 1.2 A in
half-width. To reduce the interacting CPU time, one cal-
culates only a line scan of the electron probe across the
Ge/Si boundary through the atomic centers. For simpli-
city of the calculation, the Ge and Si lattice are assumed
to be matched coherently at the boundary and both of the
materials have the same lattice constant. The beam in-
cident azimuth was chosen as [100]. The atomic scatter-
ing factor is taken in the form of Mott formula,

“‘f (s)
f(5)=0.023934——*— | (53)
S

where s =u /2, Z is the atomic number, and f, is the x-
ray scattering factor for this atomic number. Also, a
proper Debye-Waller factor has been added to the
scattering factor of each atom according to the assumed
mean vibration amplitude. This can significantly affect
the relative contrast of each atom in the ADF images.

1. Accuracy of using Egs. (46) and (49)
for ADF image simulations

The quantitative simulation of ADF images involves
the treatment of incoherency of the TDS waves generated
from different crystal slices if all the atoms are vibrating
completely randomly. The vibration correlation of the
neighboring atoms will not affect the image simulation
according to Wang and Cowley,zg’32 therefore the atoms
within the same slice can be assumed to vibrate as a
whole in a sheet. To process the incoherent calculation
accurately, one has to calculate the TDS wave generated

(b)Si L-Edge CBED

FIG. 5. Simulated Si(100) CBEDepatterns from (a) elastic scattered electrons and (b) electrons after exciting the Si L edge and then
being elastically scattered for 543 A to form the Kikuchi pattern. The beam convergence half-conical angle is 5.55 mrad and the

energy-loss window is A=5 eV above the L edge.
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from different slices and let them be scattered elastically
through the rest of the crystal thickness individually,
then add the intensities of each individual TDS com-
ponents generated from different slices after penetrating
through the crystal. This calculation process considers
the incoherency of the inelastic scattering precisely but
involves huge amounts of calculations. This is the exact
result of dynamic scattering theory of Eq. (40), which
should apply to crystals of any thickness if only a single
phonon process is considered.

The simplified methods, described in Egs. (46) and (49),
can greatly reduce the amounts of calculation, but the ac-
curacy of this treatment has to be examined. Shown in
Fig. 6(a) is a comparison of the calculated ADF image
across the Ge/Si boundary using the theory of full dy-
namic incoherent scattering (described in the last para-
graph) (curve A4), Eq. (49) (curve B), and Eq. (46) (curve
C). Different intensity levels are obtained for the
different equations, but each of the curves shows almost
the same variation tendency. To see the relative contrast
variation of the Ge and Si atoms, the three curves are
normalized at the Ge site and compared in Fig. 6(b). It is
surprising to note that the three curves show almost the
same contrast variations. The contrast difference be-
tween them is less than 5%. This gives the answer that
the simulation based on either Eq. (46) or Eq. (49) can
give almost the accurate contrast distribution of the ADF

ADF Image from TDS
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FIG. 6. (a) A comparison of the simulated ADF image inten-
sity across the Ge/Si interface using the full dynamical in-
coherent scattering theory (i.e., consider the elastic scattering of
the electrons after being inelastic scattered) (curve A),
simplified incoherent imaging theory Eq. (49) (curve B), and Eq.
(46) (curve C). (b) is a comparison of the three curves shown in
(a) after being normalized at the Ge sites. This is to test the ac-
curacy of simulated imaging contrast by use of the simplified
theory. The specimen thickness is 108.3 A. The mean displace-
ments of the Ge and Si atoms are taken as 0.1 A.
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image for a thin crystal. This important result shows
that the incoherent imaging theory can be used to simu-
late the ADF imaging contrast quantitatively if the image
intensity is dominated by TDS.

It may be noticed that the Si atom closest to the Ge
boundary has higher contrast than the next Si atom.
This may come from the contribution of the tail of the
probe scattering from the Ge or from a spreading of the
probe in the crystal due to the discontinuity at the inter-
face. Then it is possible that an error of one monolayer
may be made in the chemical identifications.

It is important to emphasize that the incoherent inelas-
tic scattering can give atomic resolution lattice images.
The mechanism is obviously different from the coherent
TEM or STEM imaging theory. The simulations de-
scribed in Sec. VIB2 are carried out using Eq. (49) by
considering the contribution of the TDS electrons only.

2. Dependences of ADF imaging contrast on the size
of the ADF detector, the focus of the objective lens,
and the specimen thickness

ADF STEM imaging contrast depends on the size of
the ADF detector. Shown in Fig. 7 is a comparison of
the simulated pure TDS ADF image [according to Eq.
(49)] across the Ge/Si(100) interface for different angular
collecting ranges of the ADF detector. The TDS electron
around the center diffraction disk (8 <37 mrad) gives al-
most an uniform intensity at each atomic sites, where S is
the collection angle of the detector in the diffraction
plane. When the collecting angle goes higher to
37 <B <74 mrad, a large amount of TDS electrons come
into the detector and show atomic resolution. It is obvi-
ous that the Ge atoms have stronger contrast compared
to the Si atoms. But the contrast does not follow the rule
of proportionality to Z2, as expected from a model of
single-atom Rutherford scattering. If the detector angle
goes even higher to 74 <3< 111 mrad, the image intensi-
ty starts to drop off. It is obvious that most of the TDS

/% 37<B<74mrad

I ’ \' - -/ ll_.\\° /°’°\
SR AR YR A
wd 74<B<111mrad " V" °\°_°
w . \.
_.~.-._._.—.—’_.§'_".—‘—‘_.\"'—-—.—._0.-.\'—.—.-—0-.—.~.}I:l
0<B<37mrad
' Ge Ge Si Si

FIG. 7. Dependence of the high-angle ADF STEM lattice
images on the angular collecting range of the ADF detector,
simulated for the Ge/Si(100) interface. The specimen thickness
is 108.3 A. The mean displacements of the Ge and Si atoms are
taken as 0.1 A.
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electrons are accumulated at the angular range of
37<B< 111 mrad. Also, it is noticed that the relative
contrast of Ge/Si changes from 1.69 to 1.86 when the
detector angles change from 37<B<74 mrad to
74 <B <111 mrad.

When Eq. (46) was derived, an assumption, namely, the
TDS intensity collected by the ADF detector is propor-
tional to the total thermal diffuse scattering if the ADF
detector angle is wide, was made. The validity of this as-
sumption can be seen through Fig. 7, because the TDS
electrons distributed in the angular range of <37 mrad
is a small portion of the total TDS compared to the inten-
sity collected by the detector of 37 <8< 111 mrad. The
imaging contrast is then actually dominated by the TDS
electrons in the angular range 37 << 111 mrad. This is
the reason that the calculation based on either the accu-
rate TDS theory [curve 4 in Fig. 6(a)], Eq. (49) [curve B
in Fig. 6(a)], or Eq. (46) [curve C in Fig. 6(a)], gives al-
most the same contrast distribution.

ADF image contrast depends on the specimen thick-
ness, but not as much as the dependence of the coherent
images. It has been shown that the contrast reversal can
occur in the ADF image only if the high-order Laue
zones (HOLZ) are included by the detector.?’ It is then
suggested that the HOLZ effects would be excluded in or-
der to avoid the difficulty of imaging interpretation.
Shown in Fig. 8 is a comparison of the relative contrast
across the Ge/Si interface for two different specimen
thicknesses. The imaging intensity is normalized at a Ge
site, as arrowed, for comparison purpose. It is important
to note that the relative contrast of the Ge atoms and the
Si atoms have been changed for different thicknesses, but
no contrast reversal effect is seen for the particular ADF
collection angular range.

Changing the focus of the objective lens can change the
ADF imaging contrast too, because the probe shape is re-
lated to the focus, as seen through Eq. (52b). Shown in
Fig. 9 is a comparison of the simulated ADF image con-
trast across the Ge/Si interface for two different focus
cases. Sharp atomic Z-dependent image can be seen
for Af =800 A but reduces quite significantly when

|
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FIG. 8. Dependence of the high-angle ADF STEM lattice
images on the specimen thickness, simulated for the Ge/Si(100)
interface. The mean displacements of the Ge and Si atoms are
taken as 0.1 A.
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FIG. 9. Dependence of the high-angle ADF STEM lattice
images on the focus of the objective lens, simulated for the
Ge/Si(100) interface. The specimen thickness is 108.3 A. The
mean displacements of the Ge and Si atoms are taken as 0.1 A.

Af=—800 A. The image does not show the characteris-
tic of chemical sensitivity when Af = —800 A.

As a summary of ADF image simulation, Eq. (46) and
(49) can give almost the exact contrast of the ADF im-
ages, therefore they can be used for general ADF image
simulations. The ADF image contrast is not affected by
the vibration status of the neighboring atoms, that is, the
phase of the atomic vibrations [as seen through Eq. (50)],
then therefore the image simulation will not be affected
by whether assuming the Einstein model, the Debye mod-
el, or any other model. The image contrast depends on
the collecting angular range of the ADF detector, the
specimen thickness, and the focus of the objective lens.
No contrast reversal effect is expected if the contribution
from HOLZ is excluded. The image contrast cannot be
simply predicted using the Z? rule, a dynamic calculation
for particular ADF detector angular range is required.

VII. DISCUSSIONS AND CONCLUSIONS

Equation (17) is the key equation of the multislice ap-
proach, the derivation of which was based on the follow-
ing approximations: (1) small-angle scattering, i.e.,
a?<<1; (2) small slice thickness, so that the variation of
H,, in the region (z —z,) is slow; and (3) small energy
loss, €, <<E,. Conditions (1) and (3) are usually satisfied
in high-energy electron diffraction. Condition (2) gives a
restriction on the selection of the slice thickness. This
situation is similar to the slice-thickness selection in
simulating high-resolution electron images. Good accu-
racy can be obtained by selecting the slice thickness up to
a few angstroms. Besides the above conditions, the crys-
tal thickness is also limited. This is because that the er-
ror arising from the calculation of the first slice will
“propagate” to the later slices, so that the final error is an
accumulation of all errors arising from each slice. Ac-
cording to Ishizuka and Uyeda,'? the slice thickness Az is
restricted by kAza®*<<1, where k is the electron wave
vector. This condition is often satisfied. The multislice
method, in principle, neglects the back scattering of the
electrons, which is usually very weak, especially for
high-energy electrons.
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The derivation of (17) assumed that the incident elec-
tron beam direction is along the z axis. For the nonparal-
lel incidence, (17) also valid apart from replacing o with
o'=(k/k,)o and propagation function P by
P'=(k,/k)P,>® where k, is the z component of k. The
derivation of Eq. (17) does not assume the three-
dimensional periodicity of the crystal structure. This
gives the possibility of introducing crystal defects in the
calculations. The multislice method can be applied not
only for calculating the transmission electron diffraction
but also for the reflection electron diffraction in the
geometry of glancing angle incidence.

As a conclusion of this paper, a generalized multislice
theory is proposed from quantum mechanics to approach
the multiple elastic and multiple inelastic scattering of
high-energy electrons in a non-perfect crystal. This new
theory can provide a substantial basis for characterizing
the inelastic scattering of high-energy electrons, such as
plasmon excitation, single-electron excitation, and pho-
non excitation, in a perfect crystal or crystals with de-
fects. Therefore it is a theory of Kikuchi patterns.

The application of this theory to plasmon excitation
gives the same answer as obtained from the physical-
optics approach. The plasmon scattering becomes impor-
tant especially in the geometry of reflection electron mi-
croscopy (REM), because the spatial variation of the in-
elastic mean-free path of the electrons can introduce
significant effect in the creation of the reflected wave. It
has been shown that the inelastic effect can deflect the
channelling electrons out of the resonance state and in-
crease the surface reflectance.’’

The application of the theory for calculating the
energy-filtered diffraction patterns of the electrons after
exciting the atomic inner shells shows the formation of
Kikuchi patterns. These calculations can be compared to
the experimental observations if the background effect of
the multiple scattered plasmon losses is excluded.

The simulation of high-angle annular-dark-field (ADF)
scanning transmission electron microscopy (STEM) im-
ages can be approached using the incoherent imaging
theory, that is, the image intensity is a thickness integra-
tion of the convolution of the electron probe intensity dis-
tribution at depth z with the inelastic thermal-diffuse-
scattering (TDS) generation function |G|%. This is
different from the coherent imaging theory either for
TEM or STEM. The TDS can produce atomic resolution
lattice images if a small electron probe, less than the unit
cell, is used. This image is produced mainly by the local-
ized inelastic scattering from the atomic sites. The ADF
image contrast is found to be Z dependent and is capable
of providing localized specimen chemical information at
sharp atomic interfaces, but a monolayer uncertainty
may be introduced.

Dynamical calculations have shown that the contrast
of ADF STEM images is dominated by thermal diffuse
scattering. The ADF imaging contrast of a row of atoms
does not depend on the vibration status of the neighbor-
ing atoms but the collecting angular range of the ADF
detector, the specimen thickness, and the objective lens
focus. Quantitative ADF lattice imaging simulation can
be carried out based on Eq. (49) if the thermal mean vi-
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bration amplitudes of the atoms at the specified tempera-
ture and solid structures are known.

Note added in proof. The ‘“‘incoherence” of the ADF
STEM imaging is suggested by Pennycook and Jesson®®
as the excitation of atomic s states based on pure elastic
calculations of large-angle Rutherford scattering. It is
not surprising to emphasize the contributions of the s
states based on their initial assumption that all the large-
angle scattering is generated at the nuclear sites.”® In
practice, however, it is believed that the image contrast is
dominated by TDS.?*32 It is obvious that the generation
function of TDS [Eq. (50)] is zero at the equilibrium posi-
tion of each atom,’? which can produce significant
different image contrast from the one expected from the
Rutherford scattering model, in which the maximum
scattering occurs at the nuclear sites, especially when the
size of the electron probe is equal or less than the atom
sizes.

As pointed out at the end of Sec. VI A, adding a ran-
dom number to the inelastic waves generated from
different crystal slices cannot effectively characterize the
incoherence of the inelastic scattered electrons especially
in diffraction calculations. This problem can be solved
using a new introduced method for solving Eq. (5) in thin
crystal cases.*’
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APPENDIX A: DERIVING EQ. (7a) FROM EQ. (6)

Let us first consider the nth inelastic component. By
defining U, as

2my
U, (r)=3 7 H, (r)¥,(r), (A1)
Eq. (5b) can then be written as
(V2+k)Y,(r)=U,(r) . (A2)

The solution of (A2) can be found with the Green-
function method,

_explilk,|lr—r')]

G(r—r,k,)= ry — , (A3)
which satisfies

(V2+kHG(r—r1',k,)=8(r—r') . (A4)
The solution of (A2) can then be written as
Y, (r)=exp[ik, r]+ fG(r—r’,k,,)U,,(r’)dr’ . (AS)

k-
Replacing ¥ by de " '
comes

and using (A1), (AS) then be-
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@, (0)=1=F 2% [ Flr—r,ky Hip, ()0, (£ )T
W(0)= %417%2 r—r'k,)H,, ('), (r')dr ,
(A6)
with
expli[k,|r—r'|—k,(r—1')
F(r—r'k,)= plilk,] | Il (A7)

lt—r'|
(A6) is the nth row of Eq. (7a).

APPENDIX B: PROOF OF EQ. (15)

Equation (15) is proved using the method of mathemat-

ical induction. First one considers the solution for L =1.
From (14b),

Fn=[ [ [T Pib—t,z—2")
z "ZO
X3 Hi\ (6,2 ) (b 20)

XP,, (b —bg,z' —2z,)
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By using the method of stationary phase for the integra-
tion of propagation function P'?, i.e., for a slow variation
function Vin the region (z —z,), one has
[ Vv,2)P,(b—b",z —2')P, (b — b, 2" —z0)d b’
=V(by,z')P,(b—by,z —z,) . (B2)
Integrating over b’ and assuming the slow variation of
the H,, in the region (z —z,) as well as k, =k,,, (B1) be-
comes

fPb,2= [ P (b—byz —z,)

XS Bl (bo, AZ)$,, (b, 2o )dby . (B3)

It is obvious that (B3) is the second row of Eq. (15) for
L=1. If f{™ satisfies (15), then f{"., will be obtained

Xdbydb'dz' . (B1)  from Eq. (14b),
fi% 1 (b,2) Py(b—b',z —2') 0
fi(b,2) o, 0 P,(b—b',z—2')
: = [dv % dz : ,
. Z—ZO . .
fim (b,z) 0 0 P,(b—b',z—z')
Hy(b',z') Hp (b,z") Hy, (b',z")
H'o(b',z') HY(b,z") H', (b,z')
X . . .
H,o(b,z') H, (b,z') H,,.(b.z")
Po(b,_bo,zl——ZO) 0
0 P (b'—by,z' —2z,)
1 1 0 0
x 7 J v ; : : :
0 0 <o P (b —bg,z' —z,)
L
hoo(bg,Az')  h{,(bg,Az') Bom(bp,Az") | [ d(bg,z,)
hio(bg,Az')  h'y(bg,Az") him(bo,Az') | | y(bg,zg)
X : : : : ) (B4)
Bpo(bg,Az') k) (bg,Az") By (bg, AZ") | |, (bg,2¢)

where Az’ =z’'—z,. Multiplying out the first three matrices in (B4), integrating with respect to b’ using (B2), (B4) be-

comes (B5).
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141(b,2) Py(b—bg,z —z,) 0
fil(b,z2) 1 s 0 P, (b—bpz—2zy) --- 0
. =z—!fdb0fz'=z0dz' .
fim (b,2) 0 0 o+ P,(b—bgz—z,)
Hiyy(by,z') Hp,(bgz') -+ Hp, (byz')
H’lo(bo,zl) H;l(bo,zl) H’]m(bo,zl)
X . . .
H) o(bgz') H. (byz') -+ H., (byz')

L
hoo(bo,Az')  hyy (b, Az') -+ hy,(bo,Az') | [ o(byzo)
hig(bg,Az') R, (by,Az') -+ ki, (bo,Az') | | é(bgzo)

x : : : : : (BS)
hlo(by,Az') Al (bp,Az') -+ hl (byAz')| |$m(bpzo)
Noting that k,,, ~H,,, (z' —z,) for Az'—0, then integrating by parts in (B5) for z’, one obtains
41 (b,2) Py(b—by,Az) 0 e 0
fithi(b,2) 0 P,(b—by,Az) --- 0
. =1 [ab . . .
: (L +1) 0 : : : :
fim(b,z) 0 0 -++ P, (b—byAz)
L+1
hoo(bg,Az) hg(bg,Az) -+ h,,(by,Az) do(bp,2g)
h'lo(bo,AZ) hlll(bo,AZ) et h;m(bo,AZ) ¢1(b0,20)
X : : : : : (B6)
h.o(by,Az) k! (by,Az) -+ h}, (byAz) G (bg,20)

It is necessary to point out that the results in (B6) are only valid for Az is very small. With Egs. (B3) and (B6) the
mathematical induction is completed.

APPENDIX C: CONSERVATION OF TOTAL ELECTRON INTENSITY GOVERNED BY EQ. (17)

From Egq. (17), for the convenience of analytical statement, one defines a transition matrix as

hoolbg, Az) hg (by,Az) -+ hy,,(by,Az)
hio(bg,Az) hi(by,Az) --- hi,(byAz)
T (by,Az)= : : : : (cn
h,o(bg,Az) h, (by,Az) --- h,, (byAz)
It can be directly proven from the definition of 4,,, that the matrix T has the property
T =T, (C2)

where + denotes an operation of Hermitian conjugate (i.e., complex conjugate plus matrix transpose). Also the propa-
gation function, defined in Eq. (8b), obeys,

[ dbP,(b—by,Az)P}(b—b),Az)=8(b,—b) . (C3)

The total electron intensity after penetrating a crystal slice can then be calculated according to Eq. (17),
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do(b,z)
S [#.(b,2)%db= [db[¢§(b,2)pF(b,2) - - ¢%(b,2)] | .
n=0 :
¢,,(b,z)
= [ db,[$5(by,2)d7(by,2g) - - - B3 (by,z)Jexplioc T ¥ (b, Az)]
Pj(b—b,,Az) 0
0 P}(b—b,Az) 0
X [ db .
0 0 Py (b—b,,Az)
Py(b—by,Az) 0 0
0 P,(b—by,Az) 0
X f db, : :
0 0 P, (b—b,Az)
$o(bo,zo)
#1(bg,zq)
Xexp[ia T " (by,Az)] . (C4)
ém(bo,20)
Using Egs. (C3) and (C1), integrating over b first, and then over b;, one gets from (C4)
S [Is.(b,2%db=3 [lg,(b,z)%db . (C5)
n=0 n=0

That is, the total intensity (elastic plus inelastic) is conserved before and after being scattered by a crystal slice.
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FIG. 2. Application of the multislice theory for simulating
(a) the atomic high-resolution transmission electron microscopy
(HRTEM) images and convergent beam electron diffraction
(CBED) patterns, (b) profile images of surface atomic recon-
structions in HRTEM, and (c) reflection electron microscopy
(REM) images and reflection high-energy electron diffraction
(RHEED) patterns.
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FIG. 3. Simulated large-angle convergent beam electron
diffraction LA CBED Kossel pattern of Si(100) for 100-kV elec-
trons, with half-conical angle 6° and specimen thickness 271.5
A.



Si(100) L-Edge CBED

FIG. 4. Simulated energy-filtered Si L-edge core-shell CBED
Kikuchi pattern for Si(100), for a specimen thickness 543 A,
beam convergence half-conical angle 12.95 mrad and the
energy-loss window A=5 eV above the L edge. This calculation
was done by adding arbitrary phases to the inelastic waves gen-
erated from different slices.



(a) Elastic CBED

(b)Si L-Edge CBED

FIG. 5. Simulated Si(100) CBED patterns from (a) elastic scattered electrons and (b) electrons after exciting the Si L edge and then
being elastically scattered for 543 A to form the Kikuchi pattern. The beam convergence half-conical angle is 5.55 mrad and the
energy-loss window is A=35 eV above the L edge.



