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Abstract

Researchers in different disciplines from all around the world are 
constantly working on the development of new technologies for 
harvesting energy from sustainable sources. Among the various 
alternatives, wind is one of the most abundant resources. Traditionally, 
wind energy has been harvested to produce electrical energy using 
various types of wind turbines, including onshore or offshore wind 
turbines, horizontal or vertical axis wind turbines and micro-wind turbines; 
or, less traditionally, using wind pumps, or windmills, on sailing boats, and  
through some sports activities (such as kiteboarding, windsurfing 
and kitesurfing). In this context, wind energy harvesting using triboelectric  
nanogenerators (TENGs) has unique characteristics able to challenge 
the existing wind energy harvesting technologies. Wind-driven TENGs 
are in fact characterized by simple structures, reduced size and weight, 
easy installation, flexibility and low-cost operation. Here, starting 
from a detailed comparison with conventional wind turbine systems, 
we introduce the technological advancement of wind-driven TENGs. 
Device structures, materials, fabrication processes and performance 
characteristics in terms of costs and applications are outlined. Open 
issues and challenges to be addressed towards the development and 
industrialization of commercial products are also presented.
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W-TENGs are characterized by simple structures, reduced size and 
weight, easy installation, flexibility and low-cost operation34–39. They 
offer excellent design flexibility for their simple structures (Fig. 1b), 
which only include two electrodes and a dielectric layer as functional 
materials and substrates and bolts as the supporting bodies of the 
devices39,40. This emerging energy harvesting technology can be inte-
grated and hybridized with other energy harvesting techniques41–49 
and it can be deployed in decentralized sensor applications50, in 
smart agriculture46,47 or for the internet of things (IoT)51, enabling 
the operation of sensor networks in adverse weather conditions and 
restricted areas36,52.

In this Review, we evaluate the state of the art of W-TENGs and 
their potential as wind energy harvesting systems. We start with a 
detailed comparison between W-TENGs and conventional wind 
turbines. We then describe the various W-TENG device architectures, 
their working principles and their performance. We discuss the 
strengths and the weaknesses of the different applications of W-TENGs. 
Furthermore, we address cost analysis and performance influencing 
factors and introduce alternative approaches to enhance the perfor-
mance. Finally, we outline the status of W-TENG applications towards 
industrialization.

Comparison between W-TENGs and conventional 
wind turbines for energy harvesting
The interest in W-TENGs has risen from the necessity of overcoming crit-
ical challenges posed by conventional wind turbines, such as complexity 
in installation and high cost. To compare W-TENGs and conventional 
wind turbines, three main aspects should be considered (Table 1): 
working principles (Box 1), characteristics (in terms of size, weight, 
lifetime, fabrication requirements and so on) and applications.

Conventional wind turbines generally have large components 
with high mass and lifting complexity (for example, blades and tow-
ers can be at several hundreds of metres from the ground level) that 
require the employment of heavy machinery during the installation 
processes. In the early 1980s, turbine diameters were between 10 m 
and 20 m (ref. 53). Forty years later, they have now crossed the three 
digits range (up to 236 m)1. Typical dimensions of W-TENGs are from 
a few centimetres to around a metre1,40,54. Likewise, the weight of con-
ventional wind turbines reaches several hundreds of tons, whereas 
W-TENGs are in the single digits of kilograms35,52,55,56.

W-TENGs are easier to implement than conventional wind turbines 
because they do not have any structural constraints (such as rotating 
components), operating mechanism (their working principle depends 
only on the friction between two different materials) or fabrication 
and maintenance cost complexity57 (for example, the absence of rotat-
ing parts eliminates the need for expensive lubricants and difficult 
maintenance operations, see Box 2). Conventional wind turbines need 
massive construction sites with heavy machinery supports during the 
installation time and during replacing or translocating, which are not 
necessarily so complex or time-consuming in the case of W-TENGs. 
Moreover, owing to their light weight and flexibility, W-TENGs can be 
installed with low complexity and low cost on already existing systems 
or independently.

Conventional wind turbines necessitate one-directional winds 
and specific wind speeds (which are calculated considering the tower 
height, blade length, generator capability, transformer capacity, and 
are typically in the range of 5−35 m s−1)58, whereas W-TENGs have less 
stringent speed limits (from around 0.2 m s−1 to higher than 80 m s−1)25,26 
and can effectively harvest omnidirectional winds27,59,60. For these 

Key points

	• Wind-driven triboelectric nanogenerators (W-TENGs) can be used to 
harvest energy from low-speed and high-speed omnidirectional winds 
with notable power density.

	• W-TENG-based energy harvesting technology overcomes challenges 
associated with conventional methods such as structural constraints, 
structural complexity, large volume, expensive installation, low efficiency 
and irregular wind speed environments.

	• The possibility of hybridization with different technologies makes 
W-TENGs suitable to be deployed in decentralized sensor applications, 
such as smart agriculture or the internet of things.

	• The potential application of W-TENGs in portable electronics, smart 
home appliances, smart cities, air cleaning and industrial monitoring 
systems opens the way to industrialization.

Introduction
In response to the global energy crisis, finding alternative ways for 
electricity production, moving away from traditional energy sources, 
is paramount1. The world-wide production of electricity still largely 
depends on fossil fuels (60%) and the energy demand is projected 
to increase three times by 2050 (ref. 2). In this context, wind energy 
harvesting has received notable attention because of its clean and 
renewable resources3–7. According to the latest report by the Global 
Wind Energy Council, the total installed wind energy capacity will be 
around 2 TW by the end of 2030 (ref. 8).

First introduced in the late nineteenth century, wind turbine-based 
plants for wind energy harvesting had a rapid development in the 
1980s (refs. 6,9,10). Wind turbine technology converts the mechanical 
energy of the wind into electrical energy, through the rotation of rotor 
blades, which is the driving force for the generator9,11. The efficiency in 
energy harvesting of wind turbines primarily depends on their specific 
locations and on the meteorological conditions (speed and direction 
of the wind)12,13. Conventional wind turbines (Fig. 1a) comprise several 
rotating parts (rotor blades, blade pitch controllers, generators, gear-
boxes and yaw control) and supporting components (rotor hubs, 
brakes, high towers, access ladders and heavy basements). Because of 
their bulky structures, wind turbines present several challenges, such 
as complex design, large volume, heavy weight, high installation cost, 
low efficiency and considerable losses in power transmission from 
isolated locations9,14–19.

Triboelectric nanogenerator (TENG) technology is a promising 
alternative for wind energy harvesting20,21. TENGs were introduced 
in 2012 as a new way of harvesting mechanical energy from environ-
mental sources that are commonly wasted, such as human activities, 
rotating tyres, ocean waves and many more20. Wind-driven TENGs 
(W-TENGs) use alternative wind sources, such as low-speed wind or 
wind generated by high-speed vehicles22–24. W-TENGs are expected to 
be widely used in the future for wind power collection owing to the large 
range of employable wind speeds, the possibility of harvesting omni-
directional wind and the relatively high-power density25–33. Since their 
introduction, W-TENGs have increased their power generation from 
some microwatts to around 20 mW and demonstrated the ability of 
exploiting winds at extremely low speeds such as 0.2 m s−1 (refs. 25,32). 
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reasons, W-TENG-based technology makes an excellent choice for areas 
where the employment of conventional harvesters is difficult, such as 
broadband energy47,61,62, gentle breeze29,46,49,55,63–66, human motion67–69, 
high-speed train26 and highway wind22.

From the perspective of the applications, W-TENGs can be 
deployed in densely populated areas as portable power supply for 
smaller electronic devices, environmental monitoring and sensor 
networks because they do not require open or flat space for opera-
tion70–72. Moreover, W-TENGs do not have safety issues. Conventional 
wind turbines generate a certain amount of noise during operation, 
and the rotation of the blades can lead to bird deaths, impacting the 
ecosystem and the environment1,14.

When considering the lifetime and the power output performance, 
conventional wind turbines are far ahead. However, in the early 2020s, 
W-TENGs have shown notable improvements in this sense, owing to 
new materials and boosting strategies31,32,73. For example, a fluttering 
W-TENG with a power output peak of 38.16 mW at a wind velocity of 
6 m s−1 was reported in 2023 (ref. 31). In 2022, the lifetime of a W-TENG 
was improved owing to the introduction of new materials (polyvinyl 
chloride/MoS2 composite); a steady output current signal was recorded 
under continuous working conditions for 15 h (ref. 73).

Overall, in comparison with conventional wind turbines, W-TENGs 
are preferable in terms of size, cost, flexibility, applications and safety 
when dealing with emergencies or to be used in densely populated 
regions. As a result, the potential of the W-TENG in distributed sen-
sor networks has no rival to compete in such circumstances. Further 
research in the field can expand the areas of application. For example, 
they can be used as an alternative power supply to traditional lithium-
based batteries in which waste materials are an alarming issue for 
environmental safety.

Structures and materials of W-TENGs
W-TENGs have simple structures owing to the simplicity of their work-
ing mechanism, which is solely based on the contact between two sur-
faces. In most cases, the working principle is the main criterion that 
defines the specific structure. Besides the mechanism-based choice of 
the structure, W-TENGs can be easily modified according to the wind 
energy source that needs to be harvested or to the final application. 
New materials and structures are evolving very fast to enhance the 
device performance and expand the application areas. Environmental 
conditions such as wind speed, humidity and temperature are also 
important factors in choosing appropriate materials and structures. 
In general, the higher the wind speed, the higher the power output54,55,74; 
the lower the temperature and humidity, the better the power out-
put37,75. Although some external conditions can be controlled, others 
such as cyclones, extreme rain and irregular wind orientation cannot 
be controlled; therefore, it is important to consider the possible effects 
of these external conditions when designing the device and choosing 
the materials and the structures.

Structures
The architecture of W-TENGs depends on the working principle of the 
employed TENG. TENGs are characterized by four main working modes: 
contact-separation mode40, horizontal sliding mode76, single elec-
trode mode77 and separate layer mode78. The majority of the W-TENGs 
reported in the literature are based on contact separation mode or on 
horizontal sliding mode. The choice of the working principle is mainly 
related to the environmental conditions of the application. W-TENGs 
present four architectures: (1) both-end fixed W-TENGs based on con-
tact separation mode36 (Fig. 2a); (2) single-end fixed W-TENGs based on 
contact separation mode40 (Fig. 2b); (3) flag-type W-TENGs77,79 (Fig. 2c); 

a   Conventional wind turbine b   W-TENG

Rotor
hub

Rotor blade

Blade
pitch
controller

Gearbox

Brake

Generator

Yaw controller

Access
ladder

Connecting
wires

Basement

Tower

Bolt

Dielectric
material

Electrodes

Substrate

Fig. 1 | Schematic structure of a conventional wind turbine 
and a wind-driven triboelectric nanogenerator. a, Schematic 
architectural view of a wind turbine energy harvesting system 
with its fundamental structural and functional components. 
b, Schematic structure of a wind-driven triboelectric 
nanogenerator (W-TENG).
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and (4) turntable-type W-TENG46,80 (Fig. 2d). To describe the different 
possible W-TENG structures, fluorinated ethylene propylene (FEP) (for 
the dielectric material) and Cu and Al (for the electrodes) have been con-
sidered as reference materials as they are the most employed materials 
in W-TENGs fabrication. In the both-end fixed W-TENG, the functional 
layer of the FEP film is fixed at both ends in a sandwich-like structure 
between two aluminium foils, which work as electrodes. When air flows 
across the structure, the airflow drives the FEP film to either the top 
or the bottom aluminium electrodes, charging the surfaces. In this case, 
the vibration of the FEP film is a result of Karman vortex shedding39,81. 
As the FEP film moves up and down under the action of the wind flow, 
through the electrostatic induction effect, the charge is transferred 
between the two electrodes, producing an alternating current whose 
direction is indicated in Fig. 2a. This type of structure can work with 
high-speed winds. Good structural stability can be obtained if heavy 
metallic electrodes (such as Al bars) are employed as the supporting 
body of the W-TENG82.

The single-end fixed and the flag-type structures have a similar 
working principle, in which one side of the FEP film is kept free to 
move (Fig. 2b,c). For the type 2 structure, only the FEP layer is movable, 
whereas in the case of type 3, the whole sandwich can move following 
the frequency of the wind vortex from any direction. The specific oscil-
lation frequency generated by the wind is the driving force of these 
devices. Thus, they can harvest energy from very-low-speed winds 
(0.2 m s−1) but with low and unstable outputs23,25.

The turntable-type structure is characterized by a completely 
different structure of circular shape (Fig. 2d): a copper plate is added 
at the top of the device83. In this structure, external rotating blades, 
such as the ones employed in wind turbines, are responsible for the 

W-TENG operation. The triboelectric layers and the electrodes rotate 
with the help of external blades, and the frictional contact between 
the electrode and the dielectric layer causes contact electrification. 
Novel structures are being developed based on this type of structure. 
The centrifugal brake structure, for example, contains a stator and a 
rotator that work with the wind flow through ventilators84.

The collection of wind energy with the different structures of 
W-TENGs directly affects the functional surfaces (dielectric layers 
and electrodes), leading to changes in the contact area. Variation in 
charge transfer occurs; angle-shaped W-TENG is designed in which two 
Al electrodes make an angle with an FEP film, which can completely 
touch surfaces of both electrodes, thus increasing the contact area in 
comparison to the normal sandwiched single-end fixed structure55,63,85.

In addition, new W-TENG structures are continuously investi-
gated to optimize the device performance. For example, the parallel 
double-end fixed-type structure can be modified into an arch-shaped 
structure to increase the contact area of the W-TENGs and to enhance 
its performance23. In addition to structural optimization, the exter-
nal component of the W-TENG is also an important factor; an external 
anemometer TENG part is used for collecting wind energy72 connected 
to the main W-TENG section, and an approach to deploy an external 
channel to collect wind energy and to increase the air speed has been 
reported55. Circuit management methods such as multiplier circuits 
influence the device output74,86,87. Some strategies such as decreasing 
the thickness of the dielectric film and using capacitors and charge 
pumping by deploying voltage booster circuits are used to increase 
the surface charge density of W-TENGs31,88.

In terms of applications, the first three structures are mainly 
deployed with directional winds of different speeds40,89. The fourth 

Table 1 | Comparison between conventional wind turbines and wind-driven triboelectric nanogenerators

Conventional wind turbines Wind-driven triboelectric nanogenerators

Working mechanism Faraday’s electromagnetic induction Contact electrification and electrostatic induction

Scope Wind energy source Natural wind Natural wind, human motion, subways and high-speed rails

Location dependency Location-oriented Not location oriented

Characteristics Size1,26 Up to 236 m Up to 1 m

Lifetime147 Up to 25 years Several months

Weight Heavily weighted Extremely light

Cost57 Extremely expensive Very cheap

Wind speed range25,58,147 5–35 m s−1 0.2–82 m s−1

Output power25,57 Up to 12 MW Voc = 2,000 V, Isc = 4 A

Related issues Environmental factors14 Noisy, dangerous for animals, high risk of 
accidents

Less noisy, no danger for animals and risk-free of accidents

Application areas Energy harvesting Energy harvesting, environmental monitoring and distributed 
sensors

Portability No portability Excellent portability

Flexibility (installation, 
location and maintenance)

Low High

Other factors Housing space Large (device and related equipment) Small (device only)

Machinery requirement High-weight equipped system Low-weight equipped system

Expertise Need a high-level trained team for the operation Need a lightly trained team for the operation

Integration flexibility148 Individual installation for safety reasons Possibility of having device arrays

Isc, short circuit current; Voc, open circuit voltage.
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structure is used in omnidirectional wind harvesting60,90. The flag-type 
structure can also be employed with omnidirectional wind but with 
low performance75,78,79. In many cases, the most challenging aspect is 
the stability of the device, especially for those devices able to harvest 
omnidirectional winds with fast changes in wind speeds36,90.

Materials
Surface charge density, surface roughness and surface water resistance 
are the physical properties that mostly influence the selection of the 
materials91,92. Several methods can be used to enhance the surface 
charge density: modifying the crystallinity of the materials, injecting 
extra charges into the devices or introducing functional groups or 
defects39,76. Chemical etching, plasma etching and 3D printing have 
been deployed to improve the surface roughness and, consequently, 
to increase the device efficiency52,70,74,93. In addition, the polarity, 
hydrophobicity, transparency, durability and flexibility of the materials 
influence the device performance94–98.

Polymers such as FEP, polyvinylidene fluoride, nylon, polyethyl-
ene terephthalate and polyamide are the most used dielectric layers, 
characterized by good hydrophobicity, transparency and excellent 
triboelectric properties. Al and Cu are often used as electrodes for 
their high toughness and strength, fundamental properties for making 
W-TENG structures long-lasting and stable in operation42,52,67,92,99,100.

Being a relatively new technology, the range of employed materi-
als is growing rapidly. As the research field progresses, new materials 
are being constantly investigated to improve the surface charge 
density and device sustainability67,100. For example, leaf-based and 
biomaterials-based devices have been demonstrated25,82. Function-
alized polyacrylonitrile nanofibres94 and organic semiconductors, 
such as poly(3,4-ethylenedioxythiophene)-poly(styrenesulfonate)100, 
have been investigated to increase the surface charge density. 
Carbon materials such as methyl-graphdiyne and polylactic acid 
have been deployed with some excellent applications in smart  
agriculture46,76,101.

Box 1 | Working principles of conventional wind turbines and wind-driven triboelectric 
nanogenerators
 

An alternating current generator — based on Faraday’s law 
of electromagnetic induction — is the core component of 
conventional wind turbines. An electromotive force is produced 
when an electric conductor is rotated in a static magnetic field 
(see the figure, panel a), or by rotating a magnetic field around 
a stationary electric conductor43,45,149. In wind turbines, the 
rotation of the conductor shaft, connected to the rotor blades, 
caused by the vortex force of the wind leads to a change in the 
magnetic field, thereby generating an electric potential and an 
electric current in the circuit150,151.

Contact electrification is the displacement of surface charges 
caused by the different attraction for electrons when two materials 
are put into contact. The triboelectric effect — the working principle 
of triboelectric nanogenerators — is the transfer of electric charge 
that happens when two materials come into frictional contact with 
each other. The electron transfer between two materials depends 
on their rank in the triboelectric series, which is a series of materials 

according to their tendency to gain or lose electrons. The most 
positive triboelectric material (the tribopositive layer) loses electrons 
and becomes positively charged, whereas the most negative 
triboelectric material (the tribonegative layer) gains electrons and 
becomes negatively charged71,152. When the device is in its original 
position, there is no charge movement (see the figure, panel b). 
A frictional charge is generated only when the dielectric layer gets 
into contact with the bottom electrode. When they begin to separate, 
a difference in the electric potential is produced and the positive 
charge moves from the bottom electrode to the top one. Again, 
although the surfaces are moving close to the top electrode, positive 
charges will be flowing toward the bottom electrode from the top 
electrode, through the external circuit. An electrostatic induction is 
a result of the redistribution of charges by attraction and repulsion 
under an electric field. The combination of these two effects allows 
for a constant transfer of charge through an external circuit, thereby 
generating an electric current153.
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The first single-end W-TENG, proposed in 2013, comprised alu-
minium foils as the top and bottom electrodes with an FEP film fixed 
between them as the triboelectric material40. A double-end W-TENG 
was implemented in 2015 to provide better stability to the structure36. 
To this aim and to prolong the lifetime of the devices, additional struc-
tures such as the simple flag type, the flutter type, the complex cen-
trifugal brake and other structures with rotating triboelectric layers 
have then been investigated65,79,84,102. A certain number of W-TENGs are 

serially stacked to create an ionizing channel that polarizes electrodes 
with charges and creates a higher output in the discharging cycle32.

For energy-scavenging devices, stable power outputs and lifetimes 
are highly important. The stable operation has been demonstrated up 
to more than 1,400,000 cycles, making applications, such as smart 
farming103, wind speed monitoring89 and anti-glare panel arrays in high-
ways22, possible. Besides, the polymers commonly used for W-TENGs 
are stable both in ultra-low (0.2 m s−1) and extremely high (80 m s−1) 

Box 2 | Comparative cost analysis between wind-driven triboelectric nanogenerators  
and conventional wind turbines
 

Levelized cost of energy (LCOE) is a parameter used to describe 
the average net cost of production per energy unit over the lifetime 
of the energy harvester. LCOE is one of the major issues for most 
conventional sustainable energy resources and of concern for less-
developed countries in the attempt to fight global warming and other 
environmental problems. Wind-driven triboelectric nanogenerator 
(W-TENG) technology offers a valid alternative to conventional wind 
turbines as a low-cost energy harvesting approach31,57. As a reference 
for W-TENGs, we have chosen a study published in 2023 in which 
a charge excitation mechanism is introduced to boost the device 
performance31. In this work, the output power from a single device is 
around 38.2 mW. The proposed W-TENG requires a small amount of 
electrodes, materials and other equipment that reduces the LCOE 
cost compared with other technologies. For the cost analysis process, 
we have considered the cost of the materials used to fabricate a single 
device. A total amount of around US$1.6 (see the figure, panel a)  
includes the cost of the acrylic sheet, the Al tape, the Kapton tape, 
the high-voltage diodes, the capacitors, the fluttering sheet, the 
installation cost, the operational cost and other costs related to 
the operation and the maintenance of the device (miscellaneous). We 
have collected the reference price from the online shopping merchant 
Alibaba, which is convenient for the actual fabrication cost calculation.

To compare our reference W-TENGs with conventional wind turbines, 
the LCOE values for 1 MW were calculated using the following equation:

(1)LCOE Total costs over lifetime of the device
Total electrical energy produced over lifetime of the device

=

The LCOE of the conventional turbines has been collected 
from the assessment report of 2022 by the National Renewable 
Energy Laboratory57. To generate 1 MW energy with a power output 
of 38.16 mW, 17,996 devices are needed, making a total cost of 
US$36,000 if we consider US$2.00 per device. Here, our analysis 
of the cost–effectiveness includes the cost of device integration 
as we need a massive number of devices to be connected 
altogether to get such a high power output. The cost of integration 
per W-TENG device is considered US$0.05, which is far more 
than the requirement because most of the time the installation of 
these devices is attached to some existing site, such as the anti-
glare panel arrays on highways, that needs no installation cost 
or the serially stacked devices without having more complexity 
to stack up a lot of devices together22. Serially stacked W-TENGs 
generated an adequate amount of power for 12 hygrometers and 
3,000 LEDs, which is inspiring for the feasibility of large-scale 
integration of W-TENGs32. Considering a lifetime of 5 months, the 
LCOE of the W-TENG becomes only US$10, which is the lowest value 
when compared with conventional wind turbines (see the figure, 
panel b), making the potential of these devices for mass production 
of energy evident. Even considering a lifetime for the W-TENGs of 
1 year (a shorter period if compared with other technologies), the 
LCOE less than US$5 makes this technology a feasible alternative 
for energy harvesting (also considering that further research on 
device integration and stability enhancement could lower the cost 
even further).
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speeds, making the devices usable for long periods (up to several 
months)25,40. In addition, with the ongoing research on alternative mate-
rials synthesis and biodegradable or biomaterials use, these devices 
are becoming greener energy sources with excellent stability in device 
operation25,50,73,104. Complex centrifugal brake-type structures or leaf-
like structures (with the use of textile polymers) have been introduced 
to increase flexibility and to decrease cost25,67,77,82,84.

Performance of W-TENGs
W-TENG-based energy harvesting has become an active multidis-
ciplinary research field starting from the initial years of the 2010s, 
with continuous improvements in the performance and number of 
applications over the years.

The metrics to evaluate the performances of a W-TENG device, 
and consequently define its suitability for a specific application, are 
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fixed structure. c, Flag-type structure. For the structures reported in panels a–c, 
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touches one of the electrodes), creating a difference in the electric potential. 
The electricity flows as indicated in the panels (in this case from the bottom 
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other electrode (in this case the top electrode), owing to the driving force of 
wind, the process is repeated until the dielectric layer reaches a standstill state. 
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layer between two bottom electrodes and a top circular electrode (indicated here 
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the rotating movement of the top electrodes with the wind force. Al, aluminium; 
Cu, copper; FEP, fluorinated ethylene propylene.
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the output voltage (how much power a device produces to supply the 
load), the output current (how much current a device can supply to 
the load) and the output power density (output power of a device 
divided by its volume). The values of these parameters largely depend 
on factors such as wind speed, employed materials and power enhance-
ment technologies (such as output power amplification obtained 
through external amplification systems)31,76,92. Regardless of the type 
of the structure, FEP, PTFE and polyvinyl chloride with Al and Cu elec-
trodes show the best output performances (Fig. 3a). Double-end fixed 
W-TENGs are more effective in wind energy harvesting.

Hybridization — the combination of W-TENGs with other technolo-
gies for power generation — can be used to obtain more effective energy 
harvesting and expand the application areas44,45,49,105–108. For example, 
having a W-TENG hybridized with an electromagnetic generator can 
improve the output power from 1.8 mW (for the single electromagnetic 
generator) to 5 mW (for the hybrid structure)105. Other strategies to 
improve the device performance are charge excitation87, charge han-
dling76 and the use of composite membranes73,109. Injecting charges 
into the external circuit can be used to enhance the surface charge 
density, increasing the number of charge transfers from one electrode 
to the other, resulting in higher current output31. To the same pur-
pose, extra charge injecting pump-TENG76 and composite materials73 
have been proposed. By applying new materials and using external 
circuits to increase the device outputs, the performance can be further 
increased92,97. For example, using Ag nanoparticle-based electrodes 
can produce a pulse current up to 100 mA when a transformer and a 
power management circuit are used92. A disk-shaped turntable W-TENG 
fabricated using natural cotton can produce a peak output voltage of 
782 V and a power output of 1.89 mW (ref. 97).

Another important factor to consider is the influence of the 
wind speed on the ability of the devices to generate electrical energy 
(Fig. 3b,c). Different sources such as natural wind, human movement 
and mechanical residual wind (such as waste wind from industrial 
machinery) have different speed ranges68,77. Natural wind flows depend 
on temperature and pressure differences and their speed ranges are 
strongly influenced by factors such as geographical location, topogra-
phy and season1,96. Airflow can also be obtained through human activi-
ties, such as breathing or running, which are too weak to be harvested 
through conventional technologies (speeds usually below 10 m s−1)67,68. 
Another large source of wind energy is the airflow (speed ranges from 
a gentle breeze to high-speed wind) caused by trains, cars and air con-
ditioners22,39. Last-generation W-TENGs show high outputs in terms of 
voltage and current at low-speed wind.

Performance improvement over the years
Since their first introduction, W-TENGs have shown advancement in 
their design, device output, device stability and range of applications. 
Since 2013, in over a decade, the output power from a single W-TENG 
has increased to hundred times from 0.16 mW to the 10 mW range22,40 
(towards 20 mW, Fig. 3d). W-TENGs can now power up to 3,000 LEDs 
with increasing applications ranging from small sensors to IoT devices, 
including wireless data transfer51,70,77. In 2016, harvesting energy from 
high-altitude wind (17–22 km) characterized by arbitrary direction was 
demonstrated79. The first hybridization of W-TENG with solar cells 
was introduced in 2016 (ref. 110). The use of silver nanoparticles for 
the electrodes to improve the surface charge density was investigated 
in the same year92. In 2020, a W-TENG that can harvest the extremely 
low wind speed of 0.7 m s−1 with an excellent output compared with 
other high wind speed-driven W-TENGs was proposed23. In 2019, a 

flutter-based W-TENG with an output power range of around 4 mW 
and the ability to light on more than 100 LEDs was demonstrated111. 
From 2021, the output performances have increased markedly to dou-
ble digit around 10 mW and the ability to light on almost 500 LEDs112. 
In 2023, optimized power circuitry and the introduction of device 
arrays have taken the device performances far ahead22,31,32. In the first 
case, a W-TENG is used to collect charges that are transferred to a sec-
ond W-TENG to increase the charge density at the electrode surface, 
resulting in output power able to drive a 36-W commercial fluorescent 
lamp31. The array approach works in a similar way: several W-TENGs 
are stacked together to create an ambient air ionizing channel able 
to power up 3,000 LEDs32. When the airflow (omnidirectional wind) 
activates the W-TENG, the fluttering dielectric film generates opposite 
surface charges, which are accumulated in the top and bottom elec-
trodes and are discharged in the ambient air ionizing channel, resulting 
in a higher number of induced charges on both electrodes and a higher 
electrical output. In another example, anti-glare panel arrays used on 
highways showed a power density of 0.2 W m−2 and successfully run a 
radiofrequency identification system22.

Application areas
The applications of W-TENGs are also continuously evolving. There are 
two main practical applications of wind energy TENGs: power supply 
systems and self-powered sensors.

In the first case, wind energy is transformed into electricity, 
which is stored in energy storage units through circuit management 
modules113–115. This form of W-TENG-based energy supply can be used 
to supply power to sensors on driverless buses114,116, for air purifica-
tion systems117, in self-powered motion sensors91,118, water splitting 
(breakdown of water molecule into hydrogen and oxygen)119, industrial 
monitoring120 and water/oil emulsion separation101. W-TENG-based 
power supply systems can be used to operate smart agricultural 
sensors46,103 for insect trapping, soil and ambient humidity detection 
and temperature detection. Power supplies for various IoT applica-
tions have also been introduced: anemometers121, detectors of water 
and wind flows for emergency122, meteorological monitoring70 and 
wireless data transfer systems51,70.

In the second case, W-TENGs can be used as sensors themselves. 
An external wind produces a specific electrical signal on the W-TENG, 
which is received by a data collection system for further analysis. 
The magnitude of the signal (in terms of voltage, current, frequency, 
capacitance and so on) is measured through signal processing. The 
obtained data are a measure of the wind speed50,89,123, wind direction72, 
wind level101,111,122 or any secondary sensing data and can be used to 
detect vibrations80,124–126, human motion68,69 and breathing analysis127. 
More specific applications involve the use of W-TENGs for enhanced 
metal surface corrosion protection128, electrochemical degradation129, 
high voltage polarization of ferroelectric materials130, highway anti-
glare panels22, seawater electrolysis131, wildfire prewarning system132, 
cathodic protection133 and recycling gas energy134. W-TENGs are get-
ting more attention as they are favourable in all these applications 
because of their capability to operate in harsh environments without 
sacrificing efficiency135.

Outlook
Energy harvesting through W-TENG technology has the potential to 
become a widely employed sustainable power source. However, before 
a large-scale adoption of W-TENGs is possible, some challenges must 
be addressed.
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The first and most important challenge is the low power outputs 
of W-TENGs, in comparison to the values from conventional wind 
turbines. To this aim, device integration and power enhancement 

techniques can play an important role. Towards industrialization, the 
scaling up of the device fabrication processes and the synthesis of 
new materials to improve device lifetime and stability are important 
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points. In addition, it is necessary to evaluate the reliability, stability 
and lifetime of the devices, through the analysis of the power loss in 
the transmission process, construction cost and management cost.

W-TENGs have already successfully been deployed in real-life 
applications in industrial monitoring systems120, in smart home 
appliances136,137, in smart cities138,139, for air cleaning140 and for switch 
automation141. Researchers have also demonstrated the integration 
of W-TENGs into large arrays to simulate large-scale wind farms109,142. 
However, the goal has not yet been achieved39.

From these examples, it is clear how W-TENG technology is still in 
its early stages; however, the development of prototypes can trigger 
industrialization and commercialization. For examples, anti-glare panel 
arrays used as wind energy harvesters on highways22, air purification 
modules117 and speedometers22,89,143 have the potential to become the 
first commercialized products.

There are also special environments with abundant wind energy, 
such as forests and oceans, where the construction of conventional 
wind energy generators is not convenient owing to the large size of 
the blades and the negative environmental impact of the structures. 
In these environments, wind energy can be harvested using W-TENGs. 
W-TENGs can sustain extreme meteorological conditions135 and there 
are examples of successful hybridization between W-TENG and other 
energy-scavenging technologies (such as solar panels) that use low 
wind energy effectively110,144–146. Moreover, with the improvement 
in W-TENG performance, a practical range of applications could be 
envisioned. Owing to their portability, W-TENGs can be employed in 
wearable electronics83,105. At the same time, replacing batteries with 
the self-charging mechanisms of W-TENGs is an effective way to reduce 
potential environmental pollution owing to the massive waste material 
from batteries.

The underlying fundamental properties and principles should 
also be investigated to optimize the W-TENG performance. In addition 
to the application of fundamental knowledge of triboelectricity and 
dedicated surface engineering, device optimization with the help 
of computational models and simulation analysis will make the 
fabrication of the devices effective in less time. So far, in fact, most of 
the research in W-TENG-based wind energy scavenging is exclusively 
experimental-oriented, having no simulation counterpart. Developing 
a computational analysis tool able to implement the cross-relations 
among working mechanisms, materials, structures, wind speeds and 
meteorological conditions would permit to study and optimize the 
device characteristics before the actual fabrication process takes place.

To reach all of these goals, W-TENG technology requires contribu-
tion from diverse scientific communities. A cooperative effort from 
material scientists, physicists and engineers is necessary to make 
W-TENG technology effectively competitive as a green and clean energy 
supply with the potential of self-powered portable sensor systems.

Published online: xx xx xxxx
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