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A B S T R A C T   

In the post-Moore’s Law era, there is a growing trend towards the development of advanced electronic devices 
that combine sensory perception, data storage, and computation for various applications. Two-dimensional 
semiconductor transistors, which utilize charge storage mechanisms, present a promising avenue for future in-
formation devices. Here, we introduce a neuromorphic triboelectric charge-trapping MoTe2 transistor with 
stacked high-k dielectric structure, aiming to facilitate mechano-driven logic-in-memory for neuromorphic 
computation. By gating through triboelectric potential, the device demonstrates superior electrical performance, 
including an impressive switching ratio (>105), minimal off-state current (~0.6 pA), and robust cyclic stability. 
By modulating the trapped charges in the stack gate structure via tribopotential modulation, the conductivity 
state of the MoTe2 channel can be readily controlled, realizing an exceptional mechano-driven nonvolatile 
memory with a retention time of up to 104 seconds, consistent switching behavior over 100 cycles, and multi- 
level data storage capabilities at 8 levels. Furthermore, a mechano-driven programmable inverter can be ach-
ieved by connecting a load resistor in series. The triboelectric charge-trapping transistor also possesses the ca-
pacity to emulate typical synaptic characteristics at low energy levels (~147 fJ). Leveraging the finely tunable 
conductivity through tribopotential, we demonstrate a mechano-assisted artificial neural network capable of 
recognizing handwritten digits with an accuracy rate of approximately 88.59%. These findings underscore the 
significant potential of the triboelectric charge-trapping transistor in mechanical-assisted real-time interaction, 
energy-efficient data storage, and neuromorphic computing.   

1. Introduction 

With the rapid development of artificial intelligence and Internet of 

Things (IoTs), the increasing demand for high-density data collection 
scenarios necessitates more advanced and intelligent sensing networks 
to achieve efficient and low-energy process for data acquisition.[1,2] In 
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traditional integrated circuits, the physical separation between sensing, 
storage, and computing units requires additional signal encoding/de-
coding for data transfer between these units, leading to the complexity 
of information processing, high energy consumption, and risky bottle-
necks and delays.[3–5] To overcome the limitations of traditional ar-
chitecture, a promising solution is to break the boundaries between 
computing modules and storage units by integrating these functional-
ities into one single structure through the brain-inspired in-memory 
computing technology.[6–8] This emerging architecture allows parallel 
information processing and storage, and significantly enhance the 
capability and efficiency of handling high-density data streams.[9–12] 
The in-memory computing technology has shown great promise in 
accelerating specific applications in machine learning and artificial in-
telligence.[2,13,14] However, most reported in-memory computing 
devices lack effective sensation and interaction strategies. 

The booming triboelectric nanogenerator (TENG) offers a killer 
technology for harvesting low-frequency and high-entropy energy, 
which utilizes the effects of electrostatic induction and tribo-
electrification to convert mechanical energy generated from environ-
mental vibrations or movements into electricity.[15–18] In certain 
scenarios, these vibrations or movements are also associated with some 
physical variables to be monitored, such as displacement, pressure, or 
strain. Hence, TENG not only serves as a power source but also possesses 
sensing capabilities with high sensitivity, fast response, and excellent 
stability,[16,19] which makes it widely used in micro-nano energy 
source[20–28], self-powered sensation[29–34], high-voltage power 
supplies[35–38], and blue energy fields[39–41]. Integrating TENG with 
logic devices or neuromorphic memory enables the construction of an 
advanced intelligent sensing device with integrated perception, storage, 
and computing functionalities, achieving the prototype of 
sensing-memory-computation integration.[24,27,42–45] This device 
significantly simplifies the transmission process, reduces hardware 
volume, boasts high response speed, and greatly lowers energy dissi-
pation. Notably, the coupling effect between the externally stimulated 
tribopotential and semiconductor transport characteristics establishes a 
direct and active correlation between the external environment and 
output signals.[46–49] This event-triggered interaction mechanism ex-
hibits good adaptability and high efficiency, which is more suitable for 
complex and changeable external environments.[48,50,51] In addition, 
logic devices and artificial synapses based on tribotronic transistors have 
drawn widespread attention and validated various functional devices. 
[49,51] Among these devices, two-dimensional (2D) semiconductor 
devices are the primary research focus due to their tunable band struc-
ture, excellent optoelectronic properties, and high electron mobility. For 
instance, the tribotronic floating-gate MoS2 transistor achieves multiple 
synaptic plasticity through mechanical displacement and is successfully 
used to construct an ANN for mechanoplastic neuromorphic logic 
switches and data storage.[24] Besides, utilizing tribopotential modu-
lation on the InSe/h-BN/graphene stack is also possible to achieve 
quasi-nonvolatile and synaptic characteristics through mechanical 
behavior, featuring low-power consuming and mechanical writing/-
reading capability.[45] Using semi-floating-gate design, a multifunc-
tional tribotronic WSe2/h-BN/graphene transistor with reconfigurable 
p-n junctions and artificial synapses is also developed.[44] Moreover, an 
artificial synapse based on graphene/MoS2 heterostructure exhibits 
mechano-photonic bimodal plasticity and has potential applications in 
general ANN and mixed neuromorphic computing.[26] Despite obtain-
ing unusual electronic characteristics, currently reported triboelectric 
logic circuits and artificial synapse devices still suffer from poor stability 
and short retention time, remaining significant challenges for scientific 
research and commercialization (Table S1). 

In this work, we present a mechano-driven logic-in-memory device 
based on triboelectric charge-trapping transistor with stacked gate 
structure, which can be programmed by mechanical behavior and 
implemented for mechano-driven logic gate and neuromorphic 
computation. The triboelectric charge-trapping transistor consists of a 

contact-separation TENG unit and a MoTe2 transistor with stacked gate 
dielectrics, unifying the functionality of non-volatile memory, logic 
gate, and neuromorphic computation mediated by mechanical behavior 
(i.e., mechano-driven logic-in-memory). Upon the mechanical 
displacement of the integrated TENG unit, the triboelectric charges 
mediated tribopotential (VTENG) can effectively modulate the charge- 
trapping MoTe2 transistor via the stack dielectrics, which allow the 
semiconductor charge carriers (electrons or holes) to tunnel through the 
Al2O3 barrier layer and store in the HfO2 charge-trapping layer. The 
triboelectric charge-trapping MoTe2 transistor exhibits excellent me-
chanical behavior derived electrical properties of high switching ratio 
(>105), low off-state current (approximately 0.6 pA), and good cycling 
stability. Additionally, it possesses remarkable mechano-driven memory 
characteristics, including a program/erase current ratio exceeding 
3×102, retention time of up to 104 seconds, 8-level multibit data storage 
capability, over 100-switching cyclic durability, and stable operation 
maintained for up to three months. Relying on the excellent memory 
properties, a mechano-programmable resistor-loaded inverter is also 
available to implement logic state switching by programming channel 
conductivity with TENG displacement. Moreover, a mechanoplastic 
artificial synapse at femtojoule (~147 fJ) is emulated with essential 
synaptic functions based on the triboelectric charge-trapping transistor. 
Prominent synaptic behaviors, including excitatory post-synaptic cur-
rents (EPSC), paired-pulse facilitation (PPF), short-term memory (STM), 
long-term memory (LTM), and learning-forgetting-relearning behaviors 
are successfully simulated under mechanical displacement pulse. The 
achieved dynamic updating of synaptic weights by spatiotemporal me-
chanical information establishes the foundation for the application of 
triboelectric charge-trapping transistors in the field of mechano-driven 
neuromorphic computing. Based on this, we have successfully con-
structed an ANN with three-layer perceptron for pattern recognition, 
achieving an accuracy rate of ~88.59% in recognizing handwritten 
digits using the Modified National Institute of Standards and Technology 
(MNIST) dataset. The demonstrated mechano-driven logic-in-memory 
based on triboelectric charge-trapping transistor provides a facile and 
sophisticated configuration for data storage, logic gate, and next- 
generation neuromorphic computing, holding significant importance 
in advanced artificial intelligence and interactive neural interfaces. 

2. Results and discussion 

Fig. 1a illustrates the schematic structure of the mechano-driven 
logic-in-memory device based on triboelectric charge-trapping tran-
sistor in stacked gate design and driven by the integrated TENG unit, 
which is endowed with the mechanical behavior derived nonvolatile 
memory, logic operation, and biomimetic synaptic functions (Fig. 1b). In 
the neuromorphic triboelectric charge-trapping transistor, mechanically 
exfoliated MoTe2 flake is utilized as the semiconductor channel due to 
its relatively weak Fermi level pinning at the contact interface and small 
bandgap for efficient band modulation and control of carrier polarity 
through various methods. Thermal-deposited Cr/Au (7/20 nm) are 
defined as source-drain electrodes through standard electron beam 
lithography (EBL) and lift-off processes; the essential control-gate adopts 
a high-k gate dielectric stack structure of Al2O3/HfO2/Al2O3 consecu-
tively deposited by atomic layer deposition (ALD). Cross-sectional 
transmission electron microscope (TEM) image of the stacked gate de-
vice provides a clear view of the precise layer-to-layer stacking structure 
(Fig. 1c), in which the actual thickness of the stacked gate dielectrics 
matches the theoretical value of 7/8/25 nm and the thickness of MoTe2 
channel is estimated to be approximately 8.5 nm (~10 layers, consistent 
with the atomic force microscopy result in Figure S1) with an interlayer 
spacing of ~0.79 nm (Fig. 1d, belongs to 2 H-MoTe2 crystalline structure 
and further confirmed by confocal Raman spectroscopy in Fig. 1e).[52, 
53] The TENG unit composed of a sandwiched structure of Cu/polyte-
trafluoroethylene (PTFE)/Cu in contact-separation mode is integrated to 
supply the tribopotential to power the transistor and implement the 
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charge-trapping process for mechano-driven logic-in-memory. Detailed 
device fabrication process is elaborated in Figure S2 and experimental 
section. 

The control-gate design of Al2O3/HfO2/Al2O3 (AHA) dielectric stack 
is highly effective in triboelectric charge-trapping process, where the 
HfO2 layer (8 nm) serves as the charge-trapping layer and works syn-
ergistically with the 7 nm Al2O3 tunnelling layer for mechanical 
displacement assisted programming/erasing. Thereinto, the HfO2 layer 
hosts numerous trap sites for capturing the mobile charges.[54] The 
difference in band alignment between HfO2 and Al2O3 also results in the 
formation of a deep quantum well in the HfO2 layer, with Al2O3 serving 
as a barrier to prevent the escape of captured charges to other layers. 
[55,56] Fig. 1b clearly illustrates the working mechanism of the tribo-
electric charge-trapping transistor for mechanical programming/erasing 
operations by controlling the magnitude and polarity of the coupled 
tribopotential VTENG pulses, which involves triboelectric-assisted Fowl-
er-Nordheim tunneling (F-N tunneling) and charge trapping process. 
[56,57] VTENG mediated with triboelectric charges is coupled to the 
MoTe2 channel and assist the charge carrier injection/storage process in 
the AHA dielectric stack, synergistically influencing the transport 
characteristics of the semiconductor channel.[58] The proposed tribo-
electric charge-trapping transistor can actively respond to mechanical 
instructions, record and process external information, and establish a 
direct interaction between electronic devices and ambient environment. 

Prior to characterizing the electrical properties of triboelectric 
charge-trapping transistor, the influence of ALD deposition and detailed 
electrical performance of the charging-trapping MoTe2 device are first 
examined in Figure S3 and S4. After the ALD deposition process for the 
AHA gate dielectrics, a significant improvement in device performance 
is observed in Figure S3, which is likely due to the effect of vacuum 
annealing and more effective screening of Coulomb scattering at the 
stacked dielectric-semiconductor interface.[59] The charging-trapping 
MoTe2 device exhibits superior electrical output characteristics and 
typical memory properties (Figure S4). It is worth noting that after the 

deposition of the stacked gate, the bipolar MoTe2 transistor shows the 
dominance of n-type behavior in the transfer curves, which may be 
related to the difference of the tunneling barrier height during the 
capture process of electrons and holes (Figure S5).[57] 

The triboelectric charge-trapping transistor utilizes the tribopoten-
tial generated from the TENG unit to drive the device and modulate the 
transport characteristics of MoTe2 semiconductor channel. To ensure 
reliable operation of the triboelectric charge-trapping transistor, it is 
essential to accurately understand the stability of VTENG produced by the 
TENG unit (Figure S6) and corresponding gating mechanism (Figure S7). 
Under the precise control by a linear motor, the contact-separation 
distance in TENG unit is continuously varied at a constant speed, 
which can generate a continuous output voltage to serve as the scanning 
gate (i.e., VTENG) for the transistor. Fig. 2a demonstrates the real-time 
transfer characteristic curve (drain current vs. TENG displacement, ID- 
DTG) of the triboelectric charge-trapping MoTe2 transistor. Similar to the 
electrical transfer curve, the ID-DTG curve exhibits a large hysteresis 
window with a current on/off ratio of up to five orders of magnitude, 
and the magnitudes of the on-state (1.2 µA) and off-state (0.6 pA) cur-
rents are similar to that of the electrical transfer curve (Figure S3b). This 
hysteresis phenomenon may be attributed to the interface trapping 
occurring between MoTe2 channel and SiO2 dielectrics, primarily due to 
charge capture caused by oxide traps and adsorptive trap sites (such as 
moisture and oxygen). Typical tribotronic output performances are 
shown in Figure S8, exhibiting distinct output currents corresponding to 
different D from − 0.04 to +0.24 mm stepped by 0.04 mm. These results 
demonstrate that the tribopotential can successfully replace the gate 
voltage (VG) to drive the transistor. For non-volatile memory, faster 
scanning speed can provide higher operation speed for faster writing/ 
reading process. Therefore, we also study the influence of scanning 
speed on the memory window of the triboelectric charge-trapping 
MoTe2 transistor. Fig. 2b shows the relevant ID-DTG curve under 
different scanning speeds of mechanical displacement D. The slight 
decrease in the memory window may be attributed to incomplete charge 

Fig. 1. Design of the neuromorphic triboelectric charge-trapping transistor. a) Schematic image of triboelectric charge-trapping transistor with Al2O3/HfO2/Al2O3 
charge-trap stack. b) Schematic diagram of the working principle of programming the charge-trapping MoTe2 transistor using a VTENG pulse. The grey and red circles 
are electrons and holes, respectively. The VTENG generated by the TENG displacement is applied to the top gate. c) Cross-sectional TEM image of the triboelectric 
charge-trapping transistor. d) The TEM images of MoTe2 layer are magnified in detail. e) Raman spectrum of the MoTe2 with the characteristic peaks at 
~172 cm− 1(A1 g), 233 cm− 1(E1

2 g), and 288 cm− 1(B2 g), confirming multilayer character of the utilized MoTe2 [27,52,53]. 

Y. Wei et al.                                                                                                                                                                                                                                     



Nano Energy 126 (2024) 109622

4

trapping induced by the over-fast scanning speeds (Figure S9c). Similar 
phenomena have already been observed under conventional gate 
voltage scanning (Figure S9a). To further validate the excellent stability 
of the triboelectric charge-trapping transistor, real-time dynamic test is 
conducted by evaluating the ID variation, which shows a positive 
response to the gradually decreased displacement from +0.24 to 
− 0.08 mm (in 0.04 mm step) and stabilizes at a certain value (the ID 
drops in a stepwise manner from 1.2 µA to 1 pA, on/off ratio = 105, 
Figure S10). The real-time current variation under 50 consecutive cycles 
of contact-separation operations shows no significant differences 
(Figure S11), indicating excellent durability of the device. Notably, 
thanks to the antioxidative encapsulation of MoTe2 active layer via 
40 nm-thick AHA dielectric stack deposited by ALD, the electrical per-
formances of the triboelectric charge-trapping transistor show almost no 
deviation even after recording for over three months (including the 
storage window, on-/off-state currents, and switching ratio, Fig. 2c). 

As is known, channel current noises generally exist in transistor de-
vice and exhibit 1/f noise characteristics at low frequency. To investi-
gate the current fluctuation mechanism of the AHA dielectric stack gated 
by tribopotential and exclude any probable current noise induced by the 
mechano-driven process, we conduct the low-frequency noise and 

impedance spectroscopy on the triboelectric charge-trapping transistor 
under different VG and VTENG. Under either VG or VTENG gating effect, the 
low-frequency noise (SI) of the charge-trapping device exhibits an 
increasing tendency with increasing VTG and VTENG in the frequency 
range of 2 Hz to 100 kHz at the fixed drain voltage (VD) of 30 mV 
(Fig. 2d and Figure S12), displaying the characteristic 1/f noise de-
pendency. Fig. 2e and Figure S12b depict that the normalized source- 
drain current noise spectral density (SI/ID2) is independent of VD, indi-
cating that the noise signal is primarily influenced by the intrinsic cur-
rent conduction characteristics of the MoTe2 channel, rather than the 
contact barrier between the channel and source-drain electrodes (also 
implying the well-formed Ohmic contact during the ALD deposition 
process).[60] In addition, the SI/ID2 states in the on and off states under 
both VG and VTENG modulations are also compared in Fig. 2f, exhibiting 
two highly overlapped profiles consistent with the ideal 1/f noise sig-
nals. All the above results indicate that the triboelectric charge-trapping 
transistor exhibits typical low-frequency noise behaviors following the 
1/f noise pattern, which is similar with the traditional device modulated 
by VG. It is critical that mechano-driven process does not introduce 
additional current disturbance and ensure the reliability of the tribo-
electric charge-trapping transistor for theoretical research and practical 

Fig. 2. Electrical characterization on the triboelectric charge-trapping transistor. a) Transfer curve of triboelectric charge-trapping transistor. b) Transfer curve of 
triboelectric charge-trapping transistor at different sweep rates. c) Transfer curve of triboelectric charge-trapping transistor over three months. d) The SI of the 
triboelectric charge-trapping transistor under different TENG displacements (ranging from − 0.16–0.24 mm stepped by 0.04 mm). e) The SI/IDS

2 of the triboelectric 
charge-trapping transistor at different VDS. f) The SI/IDS

2 of the on and off states is controlled separately by voltage and triboelectric potential. Energy band diagram of 
the charge trapping mechanism of the device under g) zero VTENG, h) positive VTENG, and i) negative VTENG, respectively. 
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applications. 
By analyzing the band alignment of MoTe2-AHA dielectric stack 

under VTENG gating, we can approximately depict the energy band dia-
gram of the triboelectric charge-trapping transistor under different 
working conditions as shown in Figs. 2g to 2i. The schemes illustrate the 
band diagram and charge transfer process of the device under three 
conditions of zero, negative, and positive tribopotential. At the initial 
state with the preset displacement D0, there is no charge transfer to the 
top gate electrode under zero tribopotential (i.e., VTENG = 0 V), and the 
device is in a flat band state (Fig. 2g). When the TENG is in the D- state, 
the charge balance is disrupted, leading to the induced and unbounded 
electrons transfer from the fixed Cu electrode to the top gate, equivalent 
to applying a negative gate voltage (-VTENG, consistent with the contact 
process in Figure S7). As the relative distance between the Cu electrode 
and PTFE/Cu layer decreases, -VTENG will also decrease. Under a suffi-
ciently negative VTENG, the energy band of the Al2O3 dielectric layer will 
bend into a triangular barrier with a reduced width. Thus, by controlling 
the magnitude of VTENG, we can modulate the thickness of the dielectric 
barrier and control whether electrons or holes can tunnel through the 
Al2O3 barrier and inject into the HfO2 trapping layer. Under -VTENG 
gating, the accumulated holes in MoTe2 channel tunnel through the 
Al2O3 barrier and get injected into the HfO2 trapping layer, where they 
can be captured and retained (red arrow in Fig. 2h). Simultaneously, the 
residual electrons in the HfO2 layer can drift back into the MoTe2 
channel through the field emission effect (blue arrow in Fig. 2h). In this 
circumstance, both of the charge carrier behaviors lead to the tribotronic 
threshold value (DTH) shift in the D- direction (blue curve in Fig. 2a). In 
the third situation of Fig. 2i, when the Cu electrode separates from the 
PTFE/Cu layer (D+ state), some of the induced electrons flow to the 
ground and weaken the confinement between the electrons in PTFE and 
the remaining positive charges in the fixed Cu film. As a result, some 
positive charges accumulate at the top gate and Al2O3 interface, creating 
an equivalent positive gate voltage (+VTENG > 0 V, consistent with the 
separation process in Figure S7). In this case, the trapped holes will be 
repelled back into the channel by the tribopotential, while the electrons 
tunnel through the Al2O3 barrier through the F-N tunneling and get 
injected into the HfO2 trapping layer (Fig. 2i). Thus, under +VTENG, the 
tribotronic threshold DTH will shift to the D+ direction (red curve in 
Fig. 2a). The detailed analysis on energy band diagram demonstrates the 
induced tribopotential can effectively modulate the energy band and 
barrier width of the AHA dielectric stack, and enable efficient charge 
capture and release, which lays the foundation for the mechano-driven 
logic-in-memory and artificial synaptic features. 

Based on the above discussed reliable charge transport/trapping 
mechanism assisted with mechanical displacement, we further explore 
the potential application of the triboelectric charge-trapping transistor 
as a mechano-driven multibit memory device. Fig. 3a shows a single- 
cycle dynamic operation of the memory, including programming, 
reading, and erasing processes. The programming operation is achieved 
by applying a D- pulse to the memory device (DPRO = − 0.16 mm, width 
= 0.5 s, corresponding VTENG pulse = ~-20 V). Under the influence of 
-VTENG, the holes in MoTe2 channel tunnel through the Al2O3 barrier and 
accumulate in the HfO2 trapping layer. Due to the high energy barrier of 
the AHA stack gate, the holes remain stably stored in the HfO2 trapping 
layer even after removing the pulse. The accumulation of holes in the 
HfO2 trapping layer generates a local positive electric field, leading to a 
high concentration of electrons in the MoTe2 channel with a highly 
conductive and readable state (on-state). As shown in Fig. 3a, ID shows a 
sharp increment in current after the mechanical programming, stabilizes 
at ~550 nA, and remains stable even after 200 seconds, indicating the 
typical non-volatile characteristics of the triboelectric charge-trapping 
transistor. The device can also be reset to a low-conductive state by 
applying an erasing D+ pulse (DPRO = 0.24 mm, width = 0.5 s, resulting 
in +VTENG = ~20 V). During this process, the holes trapped in the HfO2 
trapping layer are repelled back to the MoTe2 channel (off-state). The 
recorded transient current after erasing is 61 pA and shows a subsequent 

increment to ~0.7 nA after 60 seconds, which may be attributed to some 
repelled holes re-entering the channel. Fig. 3b shows the output curves 
(ID-VD) of the triboelectric charge-trapping transistor programmed by 
different DPRO at VD = 30 mV. The linear relationship between ID and VD 
further confirms the good Ohmic contact, which can effectively reduce 
the energy loss and heat generation and enhance the reliability of the 
transistor and memory performance. 

By varying the amplitude of DPRO pulses (ranging from − 0.04 to 
− 0.16 mm, width = 0.5 seconds), a dynamic multi-level memory 
behavior can be achieved in the triboelectric charge-trapping transistor. 
As shown in Fig. 3c, ID varies from 1.7×10− 9 to 5.3 ×10− 7 A, yielding 
eight distinguishable and stable current levels (equivalent to 3 bits). 
Initially, the device is reset to a low-conductive state with a program-
ming pulse of +0.24 mm. As consecutive DPRO pulses are applied with 
increasing amplitudes, the charge-trapping state can be readily 
controlled with ID programmed into eight clear readout values. In 
memory device, the programming speed is a crucial factor to evaluating 
the electrical performances. The fabricated charge-trapping transistors 
in this work can conduct effective programming process even under the 
electrical writing pulse with 2-millisecond width, which also exhibits 
commendable repeatability (Figure S13). In practical applications, 
excellent charge retention and durability during cycling programming/ 
erasing are another crucial factor for memory devices. Fig. 3d shows the 
reliable retention performance of the memory under multiple pro-
gramming/erasing states, in which seven distinguishable conductive 
states can be maintained steadily even after 5×103 seconds (on/off ratio 

Fig. 3. Triboelectric charge-trapping transistor for non-volatile memory. a) 
Demonstration of single-cycle program-read-erase operations for the memory. 
b) Output characteristics (ID-VD) of the memory after programming with 
different programming displacements (DPRO), with VD = 30 mV and VG, READ =

0 V. c) Dynamic memory properties responding to the different DPRO sequence 
of Program-Read-Erase-Read. d) Retention performance of memory, the current 
is read after programming with VD = 30 mV and DTG = 0 mm. e) The endurance 
of the memory device for 100 cycles program (-0.16 mm, 0.5 s) and erase 
(+0.24 mm, 0.5 s) operations. 
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> 3×102). Moreover, further monitoring on the programming/erasing 
states for up to 104 seconds reveal almost no significant degradation or 
deterioration in the device and promises with an industry-standard 10- 
year data retention performance (Figure S14). To evaluate the durability 
of the memory, we perform cyclic programming (DPRO = +0.24 mm, 
width = 0.5 s) and erasing (DPRO = − 0.16 mm, width = 0.5 s) process to 
implement the switching between the low and high conductive states. As 
shown in Fig. 3e, after 100 cycles, there is almost no change in the 
programming/erasing current ratio, demonstrating the device’s excel-
lent fatigue resistance. In addition, we have also investigated the 
mechano-driven memory properties for over three months, which reveal 
no significant fluctuations in writing, reading, erasing, and retention 
characteristics (Figure S15). The outstanding retention and reliability 
further confirm the highly efficient and stable TENG gating and the 
excellent charge trapping capability of the tribotronic device. 

As the TENG unit can readily set the state of the charge-trapping 
memory by using a programming displacement DPRO, a mechano- 
driven programmable inverter with non-volatile characteristics can be 
constructed by connecting a 50 MΩ resistor in series with the 

triboelectric charge-trapping transistor (equivalent circuit diagram in  
Fig. 4a). In this circuit, the source of the triboelectric charge-trapping 
transistor is connected to the PTFE/Cu layer and grounded, while the 
drain is connected to the 50 MΩ resistor as the output terminal (VOUT). 
Additionally, the top gate is connected to the fixed Cu layer serving as 
both the programming port for setting the transistor’s conduction state 
and as the input terminal (DIN) for driving the inverter during logic 
operations. Based on the non-volatile programmable characteristics of 
the triboelectric charge-trapping transistor, we can precisely control the 
charge capture/release properties in the AHA structure via mechanical 
displacement, readily realize the modulation on the transistor’s switch 
threshold (DTH or VTH). As shown in Figs. 4b and 4c, according to the 
screening efficiency of the captured charges in the AHA structure, the 
discrete memory states in the triboelectric charge-trapping transistor 
can be roughly divided into three types (equivalent circuit diagrams in 
Figure S16). When a larger D- pulse is applied to program the device 
(DPRO = − 0.16 mm, width = 1 s), the holes tunnel into the HfO2 layer 
with the left electrons strongly doping the MoTe2 channel. In this state, 
the equivalent circuit is similar to a short circuit status, labelled as 

Fig. 4. Nonvolatile programmable inverter based on triboelectric charge-trapping transistor. a) Equivalent circuit diagram of the TENG-driven nonvolatile pro-
grammable inverter. b) and c) The working principle and operation process of the inverter at DIN = 0 mm and DIN = +0.012 mm with three memory states. d) The 
voltage transfer characteristics of inverter at VDD = 1 V for different programming conditions as DIN increases from 0 to 0.012 mm. e) Corresponding voltage gains 
under different programming conditions. f) Truth table of the inverter under three states. g) The upper part shows the dynamic displacement DIN and corresponding 
VTENG input. h) The logic computation in three different programming states. 
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memory state 1. In contrast, when a positive D+ pulse is applied to the 
device (DPRO = +0.24 mm, width = 1 s), the n-type dominant MoTe2 
channel is depleted and exhibits low conductivity characteristics. The 
equivalent circuit is similar to an open-circuit circumstance, and we 
label this state as memory state 3. In state 2, when a smaller program-
ming displacement pulse is applied (DPRO =+0.11 mm, width = 1 s), the 
captured charges in the AHA structure cannot fully screen the input 
signal at the gate. In this state, the MoTe2 channel exhibits normal 
semiconductor characteristics, which allow the device to operate as a 
regulating transistor for inverter applications without the influence of 
captured charges. 

For the mechano-driven programmable inverter, the input 
displacement DIN range is set from 0 to 0.012 mm, corresponding to 
tribopotential ranging from 0 to 1.1 V (representing the input logic from 
“0” to “1”). To prevent the device from being reset by excessive voltage, 
we reasonably constrain the input tribopotential within the range of 
0–1.1 V and use 1 V as the supply voltage (VDD). Fig. 4d illustrates the 

output voltage transfer curve of the inverter under different mechano- 
driven programming states, with DPRO ranging from − 0.03 to 
+0.16 mm. The transfer curve shows that the logic level of the inverter 
varies at different programming states. Fig. 4e depicts the corresponding 
gain values defined by -dVOUT/dDIN extracted from the tribotronic 
voltage transfer curves. The maximum voltage gain of 212 V/mm is 
obtained at a programming displacement of +0.11 mm. The data points 
represent the actual extracted values from the transfer curves, while the 
solid line represents the results obtained through formula fitting. The 
basic electrical characterizations on the inverter based on the charge- 
trapping MoTe2 transistor are shown in Figure S17, which exhibit 
similar transfer behaviors to that under TENG driving. Based on the 
aforementioned three mechano-programming states by tribopotential, 
we further investigate the dynamic switching behavior of the inverter as 
illustrated in Fig. 4f, which shows that the VOUT and corresponding logic 
states of the programmable inverter are associated with both the DIN and 
the transistor state. Fig. 4g displays the contact-separation motion 

Fig. 5. Neuromorphic memory based on triboelectric charge-trapping transistor. a) PSC triggered by mechanical displacement pulse. b) EPSCs triggered by applying 
several displacement pulses with different amplitudes. c) EPSCs triggered by applying several different durations of displacement pulse (D = − 0.05 mm, Δt = 0.5 s). 
d) Extracted PPF index (A2/A1) vs. pulse time interval Δt. The inset shows a typical response of EPSC triggered by a pair of D pulse. e) EPSC is triggered by applying 
different numbers of displacement pulse. f) The synaptic weight (defined as the ratio of An/A1) with different pulse numbers. g) The potentiation and depression of 
the conductance (G) extracted from triboelectric charge-trapping transistor under 100 successive input pulses. The reading voltage is VDS= 30 mV. (Potentiation: D =
− 0.05 mm, duration of 0.5 s, Δt = 0.5 s; Depression: D = +0.05 mm or +0.1 mm, duration of 0.5 s, Δt = 0.5 s). h) Illustration of the three-layer perceptron ANN used 
for recognition tasks. i) Comparisons of the recognition accuracy with training epochs for handwritten digit images. 
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trajectory of TENG under linear motor control (square wave with a 
width of 2 s) and the corresponding VTENG as the input signal. When the 
device is programmed in state 1, the triboelectric charge-trapping 
transistor is in a high-conductance state. In this state, the input signal 
does not affect the output voltage, which remains at a low level (logic 
output state “0”, top graph in Fig. 4h). When the device is in state 2, it 
exhibits the transient characteristics of an inverter, demonstrating a 
stable logic inversion (middle graph in Fig. 4h). In state 3, the tribo-
electric charge-trapping transistor is configured in a high-resistance 
state, which leads to the output signal remains at a high level during 
the logic operation (denoted as logic state “1”, bottom graph in Fig. 4h). 
Compared with the common logic gate technologies, the mechano- 
driven programmable inverter based on the triboelectric charge- 
trapping transistor provides additional degrees of freedom for applica-
tions in digital and analog circuits and achieves low-power-consuming 
logic conversion by external mechanical motion, which offers an effi-
cient approach to reducing the circuit complexity and power con-
sumption in the future. 

Inspired by the biological tactile system, the mechano-driven logic- 
in-memory function of the triboelectric charge-trapping transistor can 
be further extended for emulating the biological sensory and memory 
neuron. As shown in Fig. 5a, biological synapses transmit signals 
through the neurotransmitters in the synaptic cleft. These neurotrans-
mitters bind to receptors on the post-synaptic neuron, trigger the 
opening/closing of ion channels, and alter the neuron’s membrane po-
tential to achieve signal transmission. In the triboelectric charge- 
trapping transistor, the TENG unit can mimic the mechanical sensor to 
transmit pre-synaptic signals, while the charge-trapping MoTe2 tran-
sistor serves as the synaptic device by capturing and releasing charges to 
emulate the signal transmission behavior between different neurons. 
The top-gate/drain electrode of the charge-trapping transistor is defined 
as the pre-/post-synaptic terminal; the source-drain current represents 
the post-synaptic current (PSC); MoTe2 channel conductance represents 
the synaptic weight (w). Tribopotential induced by mechanical 
displacement pulse D with spatiotemporal information can be coupled to 
the synaptic transistor to control the charge-trapping behaviors in the 
AHA stack dielectrics, thereby modulating the channel’s conductive 
state to achieve the synaptic plasticity. We first investigate the influence 
of amplitude (spatial information) and width (temporal information) of 
the mechanical displacement pulse D on the triggered EPSC behavior. As 
shown in Figs. 5b and 5c, when two different sets of mechanical 
displacement pulses are applied, all the △EPSC curves undergo a rapid 
increase with slow decay. Fig. 5b displays the △EPSC significantly in-
creases from 5.6 to 525.2 nA as the pulse amplitude increases from 0.03 
to 0.15 mm at a fixed pulse width of 0.5 s, which indicates enhanced 
excitatory synaptic behavior. This result is attributed to that larger 
amplitude D pulses generate higher tribopotential, induce more holes to 
accumulate in the AHA stack, and heavily dope the MoTe2 channel to 
produce a higher △EPSC. A similar trend is observed by increasing the 
duration of the mechanical displacement pulse (Fig. 5c). When the 
duration increases from 0.2 to 4 s at a fixed D pulse of − 0.05 mm, the 
peak value of △EPSC gradually increases. Longer durations of D pulses 
allow more holes to have sufficient time to be trapped into the AHA 
stack, leading to an increased electron concentration in the channel and 
a resultant larger EPSC. To further understand the synaptic plasticity of 
the device, we investigate the PPF behavior triggered by D, which is 
considered a typical STM feature of synapses. By simply applying a pair 
of D pulses to the triboelectric charge-trapping transistor, Fig. 5d shows 
the PPF index (PPF index = (A2/A1)×100%, A1 and A2 represent the 
peak values of the first and second EPSC) decreases from 142% to 104% 
with the increasing time interval (Δt) of D pulse (-0.05 mm), which fits 
well with a double exponential decay function (red line). This phe-
nomenon is due to the partially trapped holes in the AHA gate stack have 
enough time to diffuse into the channel and reach equilibrium, making 
A2 approach A1 gradually. 

In neuroscience, memory can be classified into two types based on 

the duration of retention: STM and LTM.[7,61] Similarly, the tribo-
electric charge-trapping transistor can adjust the synaptic connection 
strength by modulating the width, amplitude, and number of D pulses, 
enabling the transition from STM to LTM (Figure S18a). As shown in 
Fig. 5e, when the number of D pulses increases from 1 to 50, the memory 
level of the artificial synapse is significantly enhanced, indicating a 
transition from STM to LTM. This transition is also influenced by the 
width and amplitude of the D pulses as observed in Figs. 5b and 5c. 
Corresponding synaptic weight (ΔW = An/A1, An represents the △EPSC 
triggered by the nth D pulse), which represents the change in synaptic 
connection strength (or weight) triggered by the mechanical displace-
ment pulses, is extracted as shown in Fig. 5f. The ΔW gradually increases 
from 100% to 316%, indicating a successful mimicking on the learning 
and memory patterns of the brain. Based on this characteristic, we have 
tried to emulate the "learning-memory-forgetting" behaviors with the 
mechano-driven charge-trapping transistor by applying two consecutive 
displacement pulse sequences (D = − 0.05 mm, width of 0.5 second, 
separated by a 0.5-second interval). Figure S18b demonstrates that 
during the "relearning" process, after a period of stimulation (5 times, 
around 5 seconds), the channel current recovers to a higher level, 
achieving the same cognitive level with reduced learning process. 

Energy consumption is a critical factor when constructing neuro-
morphic computing systems by using artificial synapses. For the tribo-
electric charge-trapping transistor, the gate control voltage is entirely 
replaced by the tribopotential, and the source-drain bias can be reduced 
to as low as 0.5 mV. Utilizing the formula E = VD × Ipeak × t (where Ipeak 
is the peak current, VD is the source-drain voltage, and t is the pulse 
width), the energy consumption of single synaptic event can be reduced 
to 147 fJ (1.47 nA, 0.5 mV, 0.2 s), which shows a comparable level with 
that of the biological neurons (1–100 fJ, illustrated in Figure S19a).[44] 
Moreover, we have also provided a comparison of synaptic energy 
consumption in Table S2, which indicates the triboelectric 
charge-trapping transistor is comparable to or even better than the 
power consumption of most charge-trapping synaptic transistors. In fact, 
the mechanical displacement modulation in the charge-trapping process 
contributes to the elimination of energy dissipation associated with VG 
charging process, thereby reducing the overall energy consumption. 
This result indicates the prepared synaptic devices can achieve the en-
ergy efficiency levels comparable to biological neural systems, show-
casing significant potential for further neuromorphic computing and 
in-sensor computing in low-energy conditions. Furthermore, we eval-
uate the potentiation and depression of the synaptic weight (channel 
conductance) updated by mechanical displacement pulses. As shown in 
Fig. 5g, a series of 50 consecutive D- pulses (-0.05 mm, width of 
0.5 seconds, and time interval of 0.5 seconds) are applied, followed by 
another set of 50 consecutive D+ pulses (+0.05 mm, width of 
0.5 seconds, and time interval of 0.5 seconds) to obtain the update tra-
jectory of the synaptic weight (channel conductance). It’s worth noting 
that during the long-term depression process, applying 50 consecutive 
D+ pulses does not completely erase the trapped holes stored in the AHA 
stack structure. This is attributed to the relatively high tunneling barrier 
of the AHA stack, and the tribopotential generated by the +0.05 mm is 
not sufficient to erase the trapped holes. However, by increasing D+

(+0.1 mm), the initial conductivity of the channel can be restored 
(Fig. 5g). Changing the displacement pulse amplitude can effectively 
help to achieve different erasing levels. 

The successful dynamic updating on the synaptic weight through D 
pulses demonstrates the potential of this device in the field of neuro-
morphic computing. Based on this, we have constructed an ANN for 
supervised learning of handwritten digits using the triboelectric charge- 
trapping transistors and a three-layer perceptron network model. As 
depicted in Fig. 5h, the ANN comprising 784 input neurons, 100 hidden 
layer neurons, and 10 output neurons is in full connection among the 
three layers through synaptic weights (conductance). The binarized 
images of handwritten digits (28 × 28 pixels) are sourced from the 
MNIST dataset.[62] During the supervised learning process, ANN 
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utilizes the sigmoid activation function for vector transformation and 
employs the backpropagation learning algorithm to update the synaptic 
weights. Based on this approach, the neural network is initially trained 
using 60,000 training images, and then classified with 10,000 test im-
ages (additional ANN simulation details in the Supplementary Note 1). 
Fig. 5i displays the relationship between recognition accuracy and the 
number of training epochs at different depression displacements (D+). 
After 50 training epochs, with an increase in D+ (resulting in a higher 
Gmax/Gmin ratio, as shown in Figure S20), the recognition accuracy is 
improved from 78.43% to 88.59%. This result indicates a positive 
impact of higher conductance ratios on the recognition accuracy of 
MNIST images. The nonlinearity of the potentiation and depression 
curves is another crucial factor affecting recognition accuracy.[63,64] 
The training performance of the fabricated devices falls slightly below 
the ideal scenario, but it can be improved by optimizing the stack gate 
thickness and employing different displacement pulse schemes to in-
crease Gmax/Gmin and reduce nonlinearity, consequently enhancing the 
recognition accuracy. In addition, a confusion matrix for handwritten 
digit prediction with a depression displacement of +0.1 mm is also 
provided, as shown in Figure S21. It presents a comprehensive view on 
the network’s classification performance, enabling a clear assessment of 
prediction accuracy, error proportions, and categories. The results 
indicate that digit 1 exhibits the best classification performance, while 
digit 8 is the most prone to errors (82.75%). These results demonstrate 
the outstanding mechanical-driven pattern recognition performance 
with the triboelectric charge-trapping transistors. 

3. Conclusion 

In summary, we have successfully demonstrated a mechano-driven 
logic-in-memory device for neuromorphic computation. This is ach-
ieved through the proposed triboelectric charge-trapping transistor. 
Upon the mechanical displacement of the integrated TENG unit, the 
triboelectric charges mediated tribopotential can effectively modulate 
the MoTe2 transistor using the AHA stack dielectrics, which allow the 
charge carriers to tunnel and store in the HfO2 charge-trapping layer. 
The triboelectric charge-trapping transistor exhibits excellent mechan-
ical behavior derived electrical properties and memory characteristics. 
Additionally, a mechano-programmable resistor-loaded inverter has 
been developed for implementing logic switching via TENG displace-
ment. We have also successfully emulated a femtojoule (~147 fJ) 
mechanoplastic artificial synapse, demonstrating essential synaptic 
functions and achieving an 88.59% accuracy in a three-layer perceptron 
ANN learning on the MNIST dataset. The proposed triboelectric charge- 
trapping transistor holds significant promise for advanced mechanical- 
assisted interactive interfaces, low-energy logic-in-memory systems, 
and mechano-neuromorphic computation. 

4. Experiments 

4.1. Device fabrication 

The few-nanometer-thick 2 H-MoTe2 flakes (99.995%, HQ Gra-
phene) after mechanical exfoliation were transferred onto n-doped sil-
icon wafers (with a SiO2 thickness of 300 nm). Then, source and drain 
electrodes were defined using standard electron beam lithography and 
etching techniques. The channel (length of 2 μm) was defined by 
depositing a 7 nm/20 nm Cr/Au electrode on the transferred channel 
material using thermal evaporation. An Al2O3/HfO2/Al2O3 stack gate 
with layer thicknesses of 7/8/25 nm was deposited using ALD, where 
the HfO2 layer (8 nm, grown at 300℃) acted as the charge-trapping 
layer, working in synergy with the Al2O3 layer (7 nm, grown at 
120℃) to achieve charge trapping and erasing functions. Finally, a 
40 nm-thick top gate electrode (gold) was deposited using the same 
process for source/drain electrodes. The triboelectric nanogenerator 
consisting of a Cu/PTFE/Cu structure was integrated with the MoTe2 

charge-trap transistor via the top gate electrode to form triboelectric 
charge-trapping transistor, as shown in Figure S2. 

4.2. Characterizations 

The Raman characteristics of MoTe2 were measured using a 
HORIBA/LabRAM HR Evolution spectroscope with an excitation laser 
wavelength of 532 nm and a power of 25%. The morphology and 
thickness of the MoTe2 thin film were characterized using AFM (Agilent 
Technologies 5500 AFM/SPM System). The device cross-section was 
obtained using focused ion beam (FIB) milling, and TEM analysis was 
performed to analyze the stacked gate structure and channel material. 
During the device performance testing, the TENG units were driven by a 
programmable linear motor controlled by a computer, which provided 
precise displacement control to generate the desired VTENG. The Keithley 
6514 system was utilized to record the output voltage of the TENG unit. 
All electrical and tribotronic performance measurements of the device 
were conducted at room temperature in an air ambient using the Agilent 
B1500A semiconductor device analyzer. 

4.3. ANN simulation 

A three-layer ANN for MNIST pattern recognition was adopted with a 
network size of 784×100×10. The MNIST dataset consisted of 60,000 
training images and 10,000 test images, each with a size of 28×28 
pixels. In the ANN simulation, the backpropagation algorithm was uti-
lized for weight updates. The hidden layer employed the sigmoid acti-
vation function for vector transformation, and the output layer used 
Softmax. Ideal devices referred to software virtual components that 
exhibited perfect synaptic characteristics, with entirely linear conduc-
tance weight updates (curvature equals zero). 
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