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Lumbar degenerative disease (LDD) refers to the nerve compression syndrome 
such as neurogenic intermittent claudication and lower limb pain, which 
disturbs people’s daily life, and its incidence increases with age. Traditional 
diagnosis often employs magnetic response imaging or other imaging 
examinations. But the radiological data have uncertain clinical correlation and 
often be overemphasized in clinical decision making. Here, an active-matrix 
sensing array (AMSA) is proposed to measure plantar pressure during walking, 
in order to improve LDD diagnostic processes. An array of piezoelectric sensors 
with high robustness are assembled. Combined with a support vector machine 
(SVM) supervised learning algorithm, the system can classify the common 
human motions of half-squat, squat, jump, walk and jog with an accuracy 
up to 99.2%, demonstrating its capability of recognizing personal activities. 
More importantly, in 62 clinical samples of lumbar degenerative patients, the 
system can perform an artificial intelligence diagnosis, achieving an accuracy of 
100% with an area under receiver operating characteristic curve of 0.998, and 
also gives out recovery assessments after surgery. Since the personal plantar 
pressure is also indicative of other diseases, such as diabetes and fasciitis, the 
system can be extended to other medical aspects, showing a broad impact in 
biomedical engineering.
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1. Introduction

Lumbar degenerative disease (LDD) refers 
to the nerve compression syndrome, in 
which the lumbar canal narrows and 
compresses the dural sac, cauda equian, 
or nerve root.[1,2] It usually leads to pain 
or numbness and weakness in the lower 
back,[3] buttocks, and different degrees 
of neurogenic intermittent claudication 
(NIC), which limits patients’ daily activi-
ties and labor capacity.[4] As the incidence 
of LDD increases with age, it is about 
9.3% in the general population and up to 
47% in individuals older than 60 years.[5] 
Clinical diagnosis now relies on magnetic 
resonance imagining (MRI), X-ray imag-
ining, or other imaging examinations,[6] 
which are able to present the shape of the 
lumbar spinal canal. But the radiological 
data have uncertain clinical correlation 
and often be overemphasized in clinical 
decision making.[7] Therefore, clinical 
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diagnosis strongly depends on the physical examination which 
was mainly decided by medical’s experience.[8]

Recent studies show that the gait of patients with LDD is 
different from that of normal people.[9] Evaluation parameters 
include walking speed, swing time, single supporting time, and 
so on,[10] by means of bulky instruments, for example, walkway 
system,[11] cameras.[12] The wearable accelerometer is proposed 
to perform activity monitoring, but without subtle gait infor-
mation.[13] Lord[14] and James[15] preliminarily discovered that 
patients’ plantar pressure is related to LDD,[16] which attract 
researchers to attempt to design portable devices for assisting 
LDD diagnosis and recovery based on plantar pressure.[17–21] 
A pressure platform is presented as an additional diagnostic 
method for LDD and able to indicate the effectiveness of opera-
tive treatment and physical therapy after surgery.[22] While, 
in-shoe systems[23–26] are definitely preferable due to the con-
venience and capability of reflecting the interface between the 
foot and the shoe. However, the drawback is that the spatial 
resolution of the data is low due to fewer sensors. Addition-
ally, personal gaits refer to complex time-varying spatial plantar 
pressure change. Several formalistic parameters are insufficient 
and sometimes misleading for evaluating patients’ symptoms. 
Therefore, more comprehensive analysis approaches are in 
demand, such as machine learning.[27,28]

Here, we designed a wearable in-shoe monitoring system 
comprising a flexible insole with active-matrix sensing spots 
(more than 30), and a data-processing circuit board. A cell-
phone application program (APP) is also developed to real-time 
record and display the wearers’ plantar pressure. Furthermore, 

a support vector machine (SVM) supervised learning algorithm 
is employed for artificial intelligent (AI) recognition. Com-
pared with previous apparatus, the advances presented here 
involves: 1) real-time plantar pressure mapping by active-matrix 
sensing array (AMSA); 2) the employed SVM machine-learning 
algorithm exhibiting an over 99.2% accuracy for recognizing 
human motions, including squat, half-squat, jump, walk and 
jog; 3)  clinical experiments demonstrated that the combined 
system shows an LDD diagnostic ability with a recognizing 
accuracy 100%, as well as recovery state assessment capability. 
We anticipate that, as the patient’s medical database gets larger, 
the present system could be more significant in assisting doc-
tors to make quantitative diagnosis, and further gradually gives 
rise to AI medical consulting; furthermore, since personal 
plantar pressure is also indicative for other diseases, such as 
diabetes and fasciitis, the system can be extended to other med-
ical aspects, showing a board impact in biomedical engineering.

2. Results

2.1. The Monitoring System

Wearable, portable and intelligent systems exhibit great signifi-
cance in data collection,[29–31] behavioral analysis,[32,33] and health 
monitoring.[34] Here, an AMSA is presented to assist doctor in 
making diagnosis of LDD and giving recovery assessments 
(Figure  1). The AMSA is composed of a flexible printed circuit 
board (FPCB) with a 100-µm-thick polyimide as the substrate and 

Figure 1.  The design of AMSA for LDD diagnosis and recovery assessment. a) Exploded overall structure of AMSA comprising of FPCB, piezoelectric 
film, conductive tape, and leather. b) Photograph illustrates the flexibility of AMSA that can be pressed, rolled, folded, and twisted. c) Typical scene 
of sensing LDD patient’s or normal people’s plantar pressure with AMSA when walking. The data are transmitted to portable cell phone and even 
uploaded onto the medical cloud server which can be assessed by a doctor for illness evaluation and recovery assessment.
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an array of pressure-sensitive spots made up of polyvinylidene 
fluoride (PVDF) possessing the piezoelectric characteristic[35] 
(Figure 1a). The PVDF has its top and bottom surfaces both cov-
ered by silver. And then two conductive tapes are utilized to fix 
and electrically connect the PVDF piece to the FPCB. Finally, 
the as-fabricated sensing matrix is encapsulated with leather 
(sheepskin), forming a shape of an insole and a total thickness of 
1.3 mm. The fabrication and parameters in detail can be found in 
Experimental Section, Figure S1, Supporting Information.

Due to the flexibility of the above materials, the whole AMSA 
can be pressed, rolled, folded, and twisted with high adaptivity 
(Figure 1b), making it comforting to serve as an insole. More-
over, the AMSA can sense the real-time plantar pressure vari-
ation and transmit the data through a follow-up circuit based 
on Bluetooth (Figures S2 and S3, Supporting Information). 
The small circuit module is placed near the ankle, embedded 
in a wristband (Figure S3d, Supporting Information). A cell-
phone with the customized APP can display the plantar pres-
sure mapping, as well as specific pressure curve of each spot 
(Figure  S4, Supporting Information). Furthermore, the data 
can be uploaded onto the medical cloud server, which can be 
accessed by patients’ doctors for illness evaluation or recovery 
assessment in the future (Figure 1c).

2.2. Characterization of AMSA

Figure 2a shows that the AMSA is composed of 17 PVDF sen-
sors, as well as the follow-up circuit. The sensors array is marked 
in order, from the toe to the heel. As for the circuit, the amplifier 
can filter out noise benefitted by the feedback resistor and capac-
itor constituting a lowpass filter. The value of the resistor and 
capacitor, as well as the working principle and the passband’s cal-
culation of amplifying circuit can be found in Experimental Sec-
tion and Note S1, Supporting Information. Finally, the processed 
voltage will be transmitted to the cell phone through Bluetooth in 
real-time. Figure 2b,c illustrates the output voltages tested under 
different pressure (0 to around 200 kPa) without/with amplifier, 
respectively. Both show excellent linear relationship between the 
output voltage and the pressure, with slops of 0.007 and 0.016, 
respectively. And the output with the amplifier shows a higher 
drive capability. The test condition can be found in Figure S5, 
Supporting Information. The durability of the PVDF sensor was 
tested under 5000, 7000, and 10  000 press cycles with 300  kPa 
then the output was measured under the pressure of 165  kPa 
(Figure 2d), which shows quite a stability. More test results with 
enormous press cycles are illustrated in Figure S5d, Supporting 
Information. Figure  2e shows an enlarged view of the output 
voltage, showing a response time of 100 ms and a recovery time 
of 80  ms. Additionally, the temperature and humidity influ-
ences on the output performance of the sensor were examined 
in the previous studies.[36,37] In our experiment, the leather was 
employed to encapsulate the sensor and thus improve the anti-
interference ability. It can be found in Figure 2f that, the output 
voltage is around 1.8 V with a variation of about 4.6% when the 
humidity changes from 42% to 85%. And when the temperature 
varies from 23.9 to 43 degrees Celsius (Figure  2g), the voltage 
variation is about 7.3%. The anti-interference ability has a signifi-
cant improvement compared with the voltage variations around 

30% and 20% in previous study.[36] Finally, a typical real-time 
pressure change detected by the AMSA during one-step move 
is presented in Figure 2h and more sensing data can be found 
in Figures S6 and S7, Supporting Information. The curves from 
top to bottom represent the sensing data from the toe to the 
heel, respectively. The dash line indicates that the signal begins 
from the heel to the toe successively, with the high-voltage area 
appearing at the heel and the forefoot area. It matches well with 
the ergonomics during walking, indicating the AMSA’s capability 
of human plantar pressure sensing.

2.3. Human Motion Classification by AMSA

Subsequently, we employed the AMSA to classify five common 
human motions: half-squat, squat, jump, walk and jog (Figure 3). 
The plantar pressure distributions are obviously different as 
shown in Figure  3a, which illustrates the real-time output volt-
ages of the AMSA in 5 s. Figure  3b shows the voltage from 
diverse foot areas in detail. The dense and the magnitude of 
signals indicate the intensity and frequency of motions, which 
can be used to classify different motions. For example, the peak 
values of squat and half-squat are lower than others because 
these two motions move slowly, leading to lower pressure on 
the AMSA. The voltage of half-squat and squat is about 1.15 V, 
appearing at heel and forefoot areas, when the participant stands 
up or squats down. Moreover, the pressure distribution of squat 
is similar to that of half-squat, except a higher voltage due to a 
higher downward motion. An instantaneous peak value occurs 
at the moment of jump and the force location is at the forefoot 
area. As for walk and jog motions, almost all sensors have out-
puts, but the frequency of jog is apparently higher than walk.

Considering the multidimensional and enormous data, an 
SVM machine-learning algorithm is designed to classify the 
above motions. Figure 3c illustrates the schematic of machine-
learning framework, including data collection, eigenvalues 
extraction, data processing, model training, and prediction. 
Here, we extracted the average voltage value as the eigen-
value to train the machine-learning model (Figure S8a–e, Sup-
porting Information). A total of 45 samples of each motion are 
obtained and the data collection can be found in Experimental 
Section. 38 samples of them are used as model training data 
set while the other 7 are selected as the prediction data set. 
After eigenvalue extraction, the eigenvalues are pre-processed 
such as filtered or normalized to optimize the training process 
(Figure S8f, Supporting Information). The confusion matrix of 
trained model with fivefold cross-validation shows the precision 
of nearly 100%. There was only one erroneous judgment that 
judged walk motion as jump (Figure 3d). Afterwards, the confu-
sion matrix of prediction illustrated that all the other 5 motions 
were predicted right (Figure  3e), which demonstrates the fea-
sibility of the machine-learning-assisted active-matrix sensing 
array (MAS) in sensing and classifying human motions.

2.4. The LDD Diagnosis and Recovery Assessment by MAS

Since the MAS exhibits great effectiveness in recognizing 
human motions, and the symptom of LDD has a strong 
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relationship with the plantar pressure,[14–16] we utilized the 
MAS to investigate the LDD patients for establishing an 
assisting tool for helping doctors make diagnosis or assessing 
patients’ recovery. 72 samples from patients and 73 samples 
from normal people (Experimental Section and Table S1, Sup-
porting Information) are selected as model training data set 
(62 samples of patients and 63 samples of normal people) and 

prediction data set (10 samples of patients and 10 samples of 
normal people).
Figure  4a,b shows the X-Ray and MRI images of two typ-

ical cases of LDD. One is lumbar scoliosis, and the other is 
lumbar stenosis. The bent/narrow neural canal often causes 
the nerve compression, and leads to pain, numbness, or weak-
ness in the lower back and buttocks, resulting in abnormal 

Figure 2.  Characterization of the AMSA. a) The photograph of AMSA, as well as the customized APP with the schematic follow-up circuit shown on 
the right hand. b,c) The schematic of linear relationship between the output voltage and the pressure without amplifying circuit (b) or with amplifying 
circuit (c). d) The durability test of pressure sensor suffering from 5000, 7000, and 10 000 press under a force of 30 N. Then the output voltage of 
sensor was tested under a pressure of 165 kPa. e) An enlarged view of sensor’s output voltage illustrating the response time 100 ms and recovery time 
80ms. f,g) The output performance of pressure sensor under various humidity (f) and temperature (g) with testing force of 17.5 N. h) Illustration of a 
typical real-time pressure change detected by the AMSA during one-step move. The direction of the dotted line shows the signal begins from heel to toe.
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plantar pressure during walking, compared to the normal 
person. Figure  4c,d presents the average and variance values 
as the eigenvalues of training data for two cases, respectively. 
And the great difference of plantar pressure between patients 
(upper photograph) and normal people (lower photograph) 
can be found. For instance, as shown in Figure 4c, the patient 
with lumbar scoliosis (marked with the blue block) shows an 
extremely large average value at sensor 4, located at the fore-
foot, compared with the normal people. That implies the 
pressure on his heel should be lower, corresponding with the 
results presented. Similar cases can also be found in Figure 4c, 

such as sample Nos. 7 and 15. However, the patient with lumbar 
stenosis (marked with the red block in Figure  4c) might pos-
sess a similar average pressure with the normal people, but the 
pressure variance shows different, as illustrated in Figure  4d. 
Most of the patient’s pressure variances are higher than 
normal especially at sensor 4 to 8 (forefoot area) and sensor 
16 (heel area). Thus, the enhanced machine-learning method 
(SVM) with two kinds of eigenvalues was used to analyze the 
relationship between the AMSA data and the LDD symptoms 
(Figure S9, Supporting Information). Based on the distribution 
in multidimensional space, the SVM can separate the patients 

Figure 3.  The capability of AMSA in detecting and classifying different human motions combined with machine-learning method. a) The plantar pres-
sure distribution of five human motions (half-squat, squat, jump, walk, and jog) detected by AMSA. b) The excerpts of output voltage of toe, forefoot, 
midfoot, and heel corresponding to the five motions. c) The block diagram that demonstrates the procedure of the machine-learning model training. 
d,e) Confusion matrices exhibiting the result of trained model (d) with fivefold cross-validation and prediction (e).
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from normal people. As shown in Figure 4e, the t-SNE analysis 
shows the definite difference between the ill and the normal 
in dimensionality reduction space.[38] Afterwards, different 
kernel functions[39] of SVM algorithm were employed to train 
the classification model and the results are summarized in 
Figure 4f and Table 1. According to the accuracy and receiver 

operating characteristic (ROC) curve, the SVM algorithm with 
RBF kernel achieves an accuracy of 100% and area under curve 
(AUC) value of 0.998 in distinguishing patients and the normal 
people, whereas the other kernels’ accuracies are found to be 
below 90%, and the AUC values are below 0.94. The details 
of the performance evaluation of SVM with different kernel  

Table 1.  Performance evaluation of different SVM kennels for the prediction of LDD.

SVM kernel AUC Sn [%] Sp [%] Acc [%] Mcc PPV [%] NPV [%]

Linear 0.88 0.76 0.89 0.824 0.65 0.87 0.79

Quadratic 0.94 0.85 0.90 0.88 0.76 0.90 0.86

Cubic 0.95 0.92 0.87 0.896 0.79 0.88 0.92

Gaussian 0.93 0.84 0.86 0.848 0.70 0.85 0.84

RBF 0.998 1 1 1 1 1 1

Figure 4.  Preparation of machine-learning model training for the distinction of LDD. a,b) Two typical cases of LDD: lumbar scoliosis based on X-Ray 
(a) diagnosis and lumbar stenosis based on MRI (b) diagnosis. c,d) The average value (c) and variance value (d) of patients (upper part of the figure) 
and normal people (lower part of the figure) extracted as eigenvalue for training the machine-learning model. e) t-SNE analysis of the classification 
between patients and normal people based on average and variance eigenvalues presenting a definite difference. f) The ROC curve and accuracy of 
SVM model with different kernel functions showing the best RBF kernel function with AUC 0.998 and accuracy 100%.
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functions are shown in Table  1, Figures S10 and S11, Sup-
porting Information.

Accordingly, we selected radial basis function (RBF) kernel 
function for it exhibiting the best AUC and Matthews corre-
lation coefficient (MCC) (Figure  4f and Table  1). C and G are 
the key parameters related to the classification performance 
of SVM.[40] After 100-times evolutional generations by Particle 
Swarm Optimization (PSO) algorithm,[41] the fitness function 
reaches its best value of 85.6% and the average fitness value is 
higher than 70%, obtaining the optimized C of 30.8968 and G 
of 1.6474, respectively (Figure  5a). The confusion matrix indi-
cates that all 62 ill samples and all 63 normal samples were 
predicted right (Figure 5b). In addition, a predicted dataset con-
sisting of 10 ill samples and 10 normal samples is used to verify 

the machine-learning model. The t-SNE illustrated that all the 
samples are classified in the right region (Figure  5c) and the 
confusion matrix in Figure 5d presented all samples classified 
correctly.

Furthermore, we utilized the MAS to examine the postop-
erative patient. The recognition results are plotted in Figure 5e, 
which indicates subjects Nos. 5, 8, 9, and 11 are unrecovered to 
some certain. Correspondingly, it is found that No. 5 felt pain 
in the left lower limb after taking surgery, No. 9 and 11 sub-
jects felt numb to some degree, and No. 11 subject with a high 
Oswestry Disability Index (ODI)[42] felt tiny unnatural (medical 
diagnosis in Figure S12 and Table S2, Supporting Informa-
tion). According to their descriptions during the follow-up 
visit, and the t-SNE analysis in Figure 5f also showed that the 

Figure 5.  The LDD diagnosis and recovery assessment by MAS. a) Optimizing the key parameters C and G for SVM algorithm by maximizing the value 
of fitness function. b) The confusion matrix of the trained model under fivefold cross-validation. c) t-SNE analysis of the classification of patients and 
normal people. The areas are the distribution of LDD and normal people according to the trained data, and the scattered data of LDD and normal 
people distribute to the right area. d) The confusion matrix of the final predictive versus ground-truth outcomes showing the accuracy of 100%. e) The 
result of recovery assessment via MAS, and the prediction results of ill are proved to be not totally recovered. f) t-SNE analysis of the distribution of 
recovery data and trained model, which shows the samples predicted ill distributed at the boundary of ill and normal area.

Adv. Funct. Mater. 2022, 2113008



www.afm-journal.dewww.advancedsciencenews.com

2113008  (8 of 9) © 2022 Wiley-VCH GmbH

dimensionality reduction space locations of subject Nos. 5, 8, 9, 
and 11 are at the area of the ill. These results demonstrate pre-
liminarily the effectiveness of the MAS for the recovery assess-
ment. And we anticipate that with more patient’s data being 
gathered for training, the MAS’s prediction and assessment 
accuracy can be improved further, and therefore, more specific 
symptoms can be classified further.

3. Discussion

In summary, we demonstrated an AMSA capable of real-time 
monitoring the personal plantar pressure. By combining with 
the machine-learning approach, as well as the data collecting/
transmitting circuits and APP, it can recognize the common 
personal activities. More importantly, clinical experiments on 
LDD patients demonstrate that, the MAS system shows a diag-
nosis assisting ability, achieving a prediction accuracy rate of 
100% after being trained with 125 individual samples. Further-
more, it shows an excellent recovery assessment preliminarily, 
on the postoperative patients, corresponded well with the doc-
tors’ diagnosis results.

Notably, LDD contains several symptoms, as well as var-
ious severity degrees. According to our analysis, presented in 
Figure 4c,d, more eigenvalues need be investigated to further 
enhance the present machine-learning method, and even-
tually classify various symptoms and severity degrees. As 
the training samples becomes more, and the medical cloud 
database builds up, these concepts may therefore form a 
starting point for AI and remote medical services. Since per-
sonal plantar pressure is also indicative of other diseases, 
such as diabetes and fasciitis, the system can be extended to 
other medical aspects, showing a broad impact in biomedical 
engineering.

4. Experimental Section
Fabrication of AMSA: The FPCB was designed to the shape of an 

insole by Altium Designer according to the distribution of plantar 
pressure. The printed copper square (1cm  × 1cm)  areas  serve as 
the anode and the rectangle areas around were the cathode, which 
constitutes the input electrode of AMSA (Figure S1, Supporting 
Information). Silver-coated PVDF films were tailored into square shapes 
with a size of 1 cm × 1 cm. A CO2 laser cutter defined pieces of double-
side tapes (0.95 cm × 0.95 cm) and single-side tapes (1.2 cm × 1.2 cm). 
The double-side tapes stick the PVDF film and anode together. The 
single-sided tape covered the PVDF film that connects its top surface 
to the cathode (Figure S1c, Supporting Information). The double-sided 
tapes were smaller than PVDF films and single-side tapes in order not 
to cause a short circuit. 17 sensors made up an active-matrix to sense 
the plantar pressure. The signal layer was full of ground electrodes as 
shield in order to avoid the noise disturbance. In the end, the FPCB 
was encapsulated with leather (sheep skin) to improve its robustness. 
The manufacturing information of FPCB is summarized in Table S3, 
Supporting Information.

Design of the Data Acquisition Circuit: The PCB achieves the function of 
signal’s amplification, data acquisition, and data transmission. Pressure 
modulated current signal inputs to the amplifier and then the amplified 
voltage outputs to the main chip for sampling. The main chip samples 
the voltage of 17 sensors in turn through an analog switch because of the 
limited sampling channel. The sampling time was 8 µs and the sampling 
conversion mode was the repeat-sequence-of-channels mode. Then the 

data were transmitted to Bluetooth chip through serial communication 
with a baud rate 115 200. The low-power Bluetooth retransmits the data 
to a cell phone operating at notifying mode with the interval of 100 ms. 
The manufacturing and component information is summarized in 
Table S4, Supporting Information.

The PCB was designed by Altium Designer 2016. The program of 
main chip was written by assembly language to improve the execution 
efficiency. The Bluetooth program was exploited by C language. The data 
were transmitted between main chip and Bluetooth chip through serial 
communication. Terminal app operating on Android 10 was exploited 
by JAVA with visual studio platform. It can display the plantar pressure 
distribution with map graph or every single sensor’s output in real-
time. The received data can be stored at storage temporarily or sent to 
computer or server for another process. In order to save the memory, 
the form of the data was stored as “.txt”.

Data Collection: A pair of insoles collect people’s pressure data and 
transmit to cell phones through Bluetooth in real-time after the PCB 
was powered on. All the samples were collected from one person (male, 
180  cm height, 70  kg weight). Every kind of motion data set includes 
45 samples totally 225 samples divided into 190 samples (38 samples 
of each motion) for model training and 35 samples (7 samples of each 
motion) for prediction at random. For each sample, the participants 
repeat the motion lasting for 1 min. The frequency of half-squat, squat, 
jump, walk, and jog was ≈0.25, ≈0.2, ≈0.2, 2, and 3 Hz, respectively, and 
the frequency was 1 and 1.5 Hz for single step when walking and jogging, 
respectively.

For LDD distinction, a total 83 of clinic samples were acquired 
including 62 samples for model training, 10 samples for prediction, 
and 11 recovery samples. 73 samples of normal people were acquired 
to divide 63 samples for model training and 10 samples for prediction. 
53 patients (19 males, 34 females, weight ranging from 51 to 91  kg) 
and 42 normal people (30 males, 12 females, weight ranging from 48 
to 83 kg) were selected at random to collect plantar pressure by MAS. 
The information of patients, recovery people, and normal people can 
be found in Tables S1 and S2, Supporting Information. Patients and 
normal people walk around the ward lobby or laboratory corridor for a 
continuous walking lasting around 1 min and a half, and then send the 
data to computer to process and analysis.

This was a cross-sectional prospective study that was approved by the 
Ethics Committee of Peking University Third Hospital (No.M2021091). 
All the studies have gotten the approval from the participants. The 
demo of data collection procedure can be found in Movie S1, Supporting 
Information.

Data Preparation for Machine-Learning: After sampling, 17 sensors 
make up a 17 dimensions matrix. Then, the average and variance values 
were calculated as eigenvalues of every dimension. After the eigenvalue 
extraction, the matrix was normalized between 0 to 1.

The Eigenvalues Choosing Principle: On the one hand, the eigenvalue 
should be relevant to the study and the importance of eigenvalue 
choosing was to eliminate irrelevant and redundant features, for 
example, age and gender for the plantar pressure study. On the other 
hand, the eigenvalue can’t be selected infinitely which should consider 
the computational capabilities. As the system output a multidimensional 
data, the computational power consumed will grow exponentially if 
choose more eigenvalues.

t-SNE Analysis: 34 dimensions of data were dimensionality reduced to 
2 dimensions to exhibit the relationship of multidimensional data.

The Experience Conditions: The output performance of sensors 
(Figure  2) was tested through an electrometer KEITHLEY 6517 (Figure 
S5, Supporting Information). The data and data graph were processed 
by using Origin 2018. The program of machine-learning algorithm 
including model training and prediction runs on the MATLAB 2018a.

Supporting Information
Supporting Information is available from the Wiley Online Library or 
from the author.
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