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Step 2B: In the test for pinholes, a strong Raman signal 
will be obtained from pyridine adsorbed on Au SHIN cores  
if 1-nm silica shells (having pinholes) are used (Fig. 6a).  
No Raman signal will be obtained from pyridine if 4-nm 
silica shells (having no pinholes) are used, indicating that 
the Au SHIN cores are isolated (Fig. 6b).

Step 2C: During the 10-d stability test, the SHIN solution 
will not change color (Fig. 7a), and it will give a stable  
Raman signal (Fig. 7c). The bare Au NP solution will be  
far less stable (Fig. 7b,d).

Step 3A: In the SHINERS experiment on Pt(111) single-
crystal electrodes adsorbed with hydrogen, a Pt(111)-H 
stretching band will be observed at ~2,030 cm �  1 (ref. 9  
and Supplementary Fig. 1). We note that ordinary  
(unenhanced) Raman spectroscopy is not sensitive enough 
to detect hydrogen on a Pt(111) surface.

Step 3B: In the SHINERS experiment on Si(111) wafers  
adsorbed with hydrogen (ref. 9 and Supplementary Fig. 2), 
a Si-H band will be observed at ~2,150 cm �  1 after the  
sample is treated with HF solution. This peak will disappear after the sample is further treated with an oxygen plasma,  
indicating that the surface hydrogen has been removed.

Step 3C: Different spectral characteristics will be observed for SCN �   adsorbed on Au(100) and Au(111) single-crystal  
electrodes (ref. 9 and Supplementary Fig. 3). The Au-S stretching band for S-bound SCN �   at 234 cm �  1 will be much stronger 
for Au(100) than for Au(111). The C-N stretching band for S-bound SCN �   at 2,119 cm �  1 will be much sharper and stronger 
for Au(100) than for Au(111), and it is known that this peak becomes sharper and stronger as the S-bound fraction increases 
and the N-bound fraction decreases. These spectral characteristics indicate that a greater fraction of SCN �   is S-bound, and a 
smaller fraction of SCN �   is N-bound, on Au(100) compared with Au(111). Here we demonstrate that SHINERS can be used to 
distinguish different adsorbate orientations on different single-crystal facets.

Step 3D: SERS and SHINERS experiments on PATP adsorption using bare Au NPs and SHINs, respectively (ref. 9 and  
Supplementary Fig. 4), reveal that photocatalytic dimerization of PATP will lead to additional Raman signals at 1,139, 
1,387 and 1,433 cm �  1 when bare Au NPs are used but not when SHINs are used. In contrast to bare Au NPs, SHINs will  
give the true spectrum of PATP on Au and ZnO nanorods.

Step 3E: When bare Au NPs are used to detect CO on Pt(111), a Raman signal from CO on Au will be observed at  
2,125 cm �  1 and the CO on Pt(111) frequency will shift from 2,072 to 2,060 cm �  1 because charge is transferred from Au  
to Pt. When the Au NPs are surrounded by a chemically and electrically inert shell, the true spectrum of CO on Pt(111)  
can be obtained. This is shown in ref. 9 and in Supplementary Figure 5.

Step 3F: SHINERS spectra and ordinary Raman spectra collected from yeast cells (ref. 9 and Supplementary Fig. 6) will be 
quite different. SHINERS spectra will be similar to the SERS spectrum of mannoproteins, which are considered to be the main 
components of the yeast cell walls.

Step 3G: Raman peaks indicating parathion contamination will be detected on the orange peel at ~1,108 and ~1,340 cm �  1 
when SHINs are present but not when they are absent (ref. 9 and Supplementary Fig. 7). This result can be obtained using 
either a Raman microscope or a portable Raman spectrometer.

Note: Supplementary information is available in the online version of the paper.
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Figure 9 | 3D-FDTD modeling of four SHINs on an Au substrate. The objects 
are surrounded by a geometry bounding box, which in turn is surrounded by 
a mesh bounding box.
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