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Due to the coupling of piezoelectric and semiconducting dual properties, much attention has been focused on the piezoelectric 
semiconductor materials, such as ZnO, ZnS, CdS and GaN. With the usage of these piezoelectric semiconductor materials, 
novel nanodevices have been demonstrated, from which a new field called piezotronics was formulated. The core of piezo-
tronics is to study the mechanism of the piezoelectric effect on tuning the charge transport behavior across various junctions or 
interfaces, with potential applications in sensors, microelectromechanical systems, and force/pressure triggered electric devices. 
Here following the theoretical frame work of piezotronic effect, analytical solutions of piezoelectric heterojunction are pre-
sented to investigate the electrical transport behavior at a p-n junction. Numerical simulation is given for guiding future ex-
perimental measurements. 
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1  Introduction 

In recent years, numerous researches have been carried out 
to investigate the piezoelectric semiconductor materials in 
the wurtzite family, including zinc oxide, cadmium sulfide, 
zinc sulfide and gallium nitride [1–6]. Utilizing the coupled 
piezoelectric and semiconducting property, a variety of 
novel nanowire-based applications have been demonstrated, 
such as nanogenerators [7, 8], piezoelectric sensors [9], pi-
ezoelectric diodes [10], piezoelectric field-effect transistors 
[11] and piezo-phototronic devices [12]. In addition, a new 
field based on the coupling of piezoelectric and semicon-
ducting dual properties was created to investigate the effect 
of the piezoelectric charges on the electrical transport char-
acteristics to fabricate innovative electromechanical devices, 
which is named as piezotronics [13–15]. 

Taking ZnO nanowire as an example, piezoelectric 
charges will be created at the two ends of the nanowire un-
der a tensile or compress strain. These polarization charges 
form a piezopotential inside the nanowire, which can tune 
or control the electrical transport property of the nanowire 
by changing the local contact of the nanowire with the elec-
trodes from Ohimc contact to Schottky contact and vice 
versa [16].  

Zinc Oxide(ZnO), as a typical material in wurtzite struc-
ture family, has attracted great attentions due to the excel-
lent properties, such as the wide direct bang gap of about 
3.37 eV and large free-exciton binding energy of 60 meV at 
room temperature. Furthermore, splendid one-dimensional 
nanostructures of ZnO have been fabricated [17–20]. 
Therefore, ZnO is taken as the preferred material to consid-
er piezotronics. To demonstrate the fundamental theory of 
piezotronics, piezotronic models have been proposed, such 
as piezoelectric p-n junction and piezoelectric metal-semi-          
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conductor contact [21, 22]. In these theoretical works the 
effect of piezoelectric charges on the DC characteristics has 
been discussed. Numerical simulations also have been given 
to provide predictions of the carrier transport behavior. 

Herein, we extend the analysis for piezoelectric homo-
junctions to piezoelectric heterojuncitons. We first give the 
theoretical framework for the piezotronic effect, followed 
by analytical solutions for p-n GaN-ZnO piezoelectric het-
erojunction in simplified conditions. Using COMSOL soft-
ware package, the numerical simulation of the piezoelectric 
heterojunction is also given to predict the piezotronic device 
performance. Further experiments about the piezotronic 
devices can be carried out under the guidance of these theo-
retical works. 

2  Theoretical Framework for Piezotronic Effect 

In order to study the piezotronic devices utilizing the cou-
pled semiconducting and piezoelectric properties of wurtzite 
nanowires, such as ZnO and GaN, theories about piezoelec-
tricity and semiconductor are both required. A coupled set 
of constitutive equations is employed to describe the basic 
effects. As to the model of piezoelectric heterojunction, 
electrostatics equations, current density equations and con-
tinuity equations are required to describe the electrical 
transport properties of the semiconductors [23–26], and 
piezoelectric equations are also demanded to describe the 
piezoelectric behavior [27]. For piezotronic and pie-
zo-phototronic devices, heterojunction is a kind of typical 
device structure. Due to heterojunctions can be formed be-
tween two dissimilar lattice-matched semiconductors by 
epitaxial growing on top of one semiconductor, there are 
virtually no traps at interface. Therefore, heterojunctions 
have been widely used in photodetector, solar cell and LED 
applications. The piezo-charges in heterojunction provide 
another degree of freedom to dynamically tune/control the 
carrier generation, transport and recombination processes at 
the vicinity of a heterojunction. Under straining, the created 
piezo-charges at the interface of heterjunction change the 
built-in potential and electric filed. Therefore, the pie-
zo-charges will turn/control the charge transport across the 
heterojunction, which is similar as piezotronic p-n junction, 
as described by following equations.  

The Poisson equation is to relate the charge distribution 
with the electric potential distribution as shown in 
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where i  is the electric potential distribution, ( ) r  is the 

charge distribution and ε is the dielectric constant of the 
material.  

The current densities for electrons and holes governed by 
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where Jn(p) is the electron(hole) current densities, n(p) is the 
electron(hole) mobility, n(p) is the concentration of elec-
trons(holes), Dn(p)  is the electron(hole) diffusion coeffi-
cient, E is the applied electric field and Jcond is the total cur-
rent density. 

The continuity equations for electrons and holes are given 
by 

 
n n n

p p p

1
,

1
,

n
G U

t q

p
G U

t q

      
     
 

J

J
 (3) 

where Gn(p) is the electron (hole) generation rate, Un(p) is the 
recombination rate of electrons(holes). 

The direct piezoelectric effect results from the spontane-
ous and piezoelectric polarization caused by the applied 
strain. The direct effect can be formulated as a linear rela-
tion via the material property known as the piezoelectric 
constant (e)ijk which is a third rank tensor as shown in [28] 

 (P)i = (e)ijk(S)jk. (4) 

Equations of piezoelectricity are presented as the cou-
pling of electrical behavior and mechanical behavior. The 
stress-charge form of constitutive relations [27] is written as  
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where T is the stress tensor, cE is the elastic tensor, εS is the 
dielectric tensor, D is the electric displacement and E is the 
electric field vector. 

3  Analytical solution for 1D simplified piezoe-
lectric heterojunction 

It is known that p-n junctions is the basis of the modern 
electronic devices and p-n junction theory is the foundation 
of the physics of semiconductor devices [24]. Based on an-
alytical solution for piezoelectric p-n junctions [21], solu-
tion for piezoelectric heterojunction is investigated. As to 
heterojunctions, there are dozens of proposed models [29, 
30]. Taking Anderson’s model as an example, it is on the 
basis of Shockley’s homojunction diffusion theory. For 
simplicity, we describe the piezoelectric heterojunction us-
ing Anderson’s theory. The current-voltage characteristics 
of the piezoelectric heterojunction is analyzed on basis of 
drift-diffusion model. Interface states and other anomalies 
are neglected in our proposed model. With slight modifica-
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tion, it can be available for non-ideal cases. 
Similar to our previous work of the piezoelectric homo-

junction [21], the electrical contacts of the boundaries are 
considered as ideal ohmic contacts, which means the carrier 
concentrations and electrical potential will have Dirichlet 
boundary conditions. For piezoelectric heterojunctions, the 
following assumptions are also applied to investigate the 
current-voltage characteristics: 1)The abrupt depletion layer 
approximation applies; 2) Both sides of the heterojunction 
are non-degenerate so that the carrier densities are related to 
the quasi-Fermi levels through Boltzmann relation; 3) 
Compared to the majority carrier densities, the injected mi-
nority carrier densities are much lower; 4) Inside the deple-
tion layer there is no generation-recombination current, and 
the electron and hole currents are constant across the deple-
tion layer [24]. 

We first consider the thermal equilibrium condition 
without applied voltage and current flow. The charge dis-
tribution in the depletion region is assumed to be a box pro-
file, from which the electric field and potential distribution 
can be obtained. Also the built-in potential and energy band 
can be figured out. From the Poisson equation we obtain 
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where  
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is the charge density as shown in Figure 1(a), ND(x) is the 
donor concentration, NA(x) is the acceptor concentration, 
piezo(x) is the density of piezoelectric charges. Then we can 
calculate the electric field by integrating the Poisson equa-
tion. The results are displayed in Figure 1(b). 
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According to the electric field, the electric potential can be 
calculated by integrating the above equations once again by 
setting ψ(WDp)=0 as shown in Figure 1(c). 

 

Figure 1  Piezoelectric p-n heterojunction with the presence of piezoelec-
tric charges without applied voltage. (a) Space-charge distribution with the 
presence of piezoelectric charge without applied voltage; (b) electric-field 
distribution; (c) potential distribution; (d) energy-band diagram. The 
dashed lines illustrate the case without the piezoelectric charges while the 
solid lines illustrate the case in the presence of the piezoelectric charges. 
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Therefore, the built-in potential ψbi is given by 

 
2 22

A Dp piezo piezoD Dn
b

p n n

,
2 2 2i

qN W q WqN W 


  
    (10) 

where n(p)  is the permittivity of the n(p)-type semicon-

ductor, NA(D) is the acceptor(donor) concentration, piezo(x) 
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is the density of polarization charges, Wpiezo is the width of 
the piezoelectric charges distribution region and WDp(Dn) is 
the depletion layer width in the p(n)-side. Eq. (10) suggest 
that piezoelectric charges can modify the built-in potential, 
which relates to the Fermi level. As the piezoelectric charg-
es is assume to be distributed at a region much shorter than 
the depletion layer ( Dn piezoW W ), the effect of piezoelec-

tric charges on ZnO energy band can be considered as a 
perturbation.  

Similar to a regular p-n junction, the electron and hole 
diffusion currents throughout the piezoelectric heterojunc-
tion can be obtained by solving eq. (2) [24]. The results are 
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where Dn1(p2) is the electron(hole) diffusion coefficient in 
p(n)-type semiconductor, Ln1(p2) is the electron(hole) diffu-
sion length in p(n)-type semiconductor, n10(p20) is the 
equilibrium electron (hole) density in p(n)-type semicon-
ductor, and V is the applied voltage. It should be noted that 
the band offsets ΔEC 

and ΔEV are not in these equations, 
and each diffusion current component depends on the prop-
erties of the receiving side only, as in the case of a homo-
junction. 

If EF0 is defined as the Fermi level of ZnO in the absence 
of piezopotential, the Fermi level of ZnO EF2 in the pres-
ence of piezoelectric charges is given by 
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where ni2 is the intrinsic electron density of ZnO, Ei2 is the 
intrinsic Fermi level of ZnO, the hole diffusion current can 
be rewritten as  
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The result suggests that hole diffusion current density is an 
exponential function of the piezo-charges, which means that 
the total current can be tuned by controlling the sign and 
magnitude of the strain. This is the theoretical mechanism 
of the piezoelectric heterojunction. 

4  Numerical simulation of piezoelectric hetero-        
junction 

The analytical solutions present the basic physics of piezo-
electric heterojunction. Generally, equations also can be 
solved numerically. With the help of the COMSOL soft-
ware package, we demonstrate an approach to simulating 
the piezoelectric heterojunction taking the recombination of 
carriers into account. In our model, GaN and ZnO are se-
lected to be the p-type and n-type material, respectively. For 
GaN and ZnO have a low lattice mismatch of about 1.8%, it 
is applicable to neglect the interface states. 

We study the DC characteristics of the piezoelectric het-
erojunction first. The applied strain is thought to be uniform 
at the ends of the n-type ZnO nanowire and the distribution 
of piezo-charges derives from eqs. (4) and (5). The electri-
cal contacts of the device with the electrodes are supposed 
to be ideal Ohmic contacts and Dirichlet boundary condi-
tions are applied.  

To match practical experimental conditions, the Gaussian 
profile is adopted for the numerical simulation to describe 
the dopant concentration distribution. The dopant concen-
tration function N is 
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where NDn is the n-type background doping concentration 
due to the intrinsic defects, NDn max is the maximum donor 
doping concentration, NAp max is the maximum acceptor 
doping concentration, l is the length of the device, and ch is 
the doping fall-off constant. N is assigned to be negative in 
p-type region and positive in n-type region. 

The electron and hole generation rates are Gp= Gn=0 for 
no external optical excitations exist in our model. The 
Shockley-Read-Hall recombination taken as an example of 
carrier recombination mechanisms is given by 
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where τp(n) is the hole(electron) life time. Therefore, the 
basic equations can be rewritten as  
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For Dirichlet boundary conditions are applied at the con-
tact electrodes of the device, the electrical potential and the 
carrier concentration can be given by their thermal equilib-
rium values as: 
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where V is the applied voltage and  is the electron affinity 
of semiconductor.  

In our simulation, the piezoelectric charges are assumed 
to be distributed uniformly at the two ends of the n-type 
piezoelectric semiconductor within a width of Wpiezo as 
shown in Figure 2(a). The length of the p-type GaN is 20 
nm and the length of the n-type ZnO is 80 nm. The radius of 
the device is 10 nm. The n-type background doping concen-
tration NDn is 1×1015  cm3. The maximum acceptor doping 
concentration NAp max 

is 1×1017 cm3 and the maximum  

donor doping concentration NDn max 
is 1×1017 cm3. The 

doping fall-off constant ch is set to 4.66 nm. The tempera-
ture T is 300 K. More parameters of GaN and ZnO required 
in the simulation are displayed in Table 1. 

The current density curves at various voltages under dif-
ferent strains are shown in Figure 2(b). Under negative 
(compressive) strains, the positive piezoelectric charges are 
created at the interface of the heterojunction and attract 
electrons to accumulate near the interface, which results in 
an increase of the built-in potential and a reduction of the 
saturation current density. On the contrary, under positive 
strain case, the negative piezoelectric charges are created at 
the interface of the heterojunction and attract the holes to 
accumulate near the interface, which leads to a reduction in 
the built-in potential and an increase of the saturation cur-
rent density.  

Figure 3(a) shows the distribution of electron concentra-
tions at a fixed forward bias voltage of 2 V across the het-
erojunction under applied strain from 0.08% to 0.08%, 
displaying the redistribution of electrons. Under compres-
sive strain, the electron concentration shows a peak at the 
interface of the junction where the positive piezoelectric 
charges are created. Inversely under tensile strain, the elec-
tron concentration shows a valley at the interface for the 
negative piezoelectric charges repel the electrons. 

Figure 3(b) displays the distribution of hole concentra-
tions at a fixed forward bias voltage of 2 V across the het-
erojunction under applied strain from 0.08% to 0.08%, 
showing the effect of the piezoelectric charges on the hole 
distribution. Under tensile strain, the hole concentration 
shows a peak at the interface of the heterojunction where  

 

Figure 2  (a) Sketch of a piezoelectric heterojunction; (b) calculated current densities curves. 

Table 1  Properties of p-type GaN and n-type ZnO at T=300 K   

 χ(eV) Eg(eV) //,   ni (cm3) n, p (cm (VS)1) τn, τp (s) 

p-GaN 4.1 3.4 9.7 1.9×1010 900, 350 0.01, 0.01 

n-ZnO 4.5 3.37 7.77, 8.91 1×10 200, 180 0.1, 0.1 
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the negative piezoelectric charges are created. While the 
device is under compressive strain, positive piezo-charges 
are created on the interface of the heterojuncion and repel 
the holes, therefore there is no peak at the vicinity of the 
heterojunction.  

Moreover, we investigated the DC characteristics and 
carrier concentration distribution at various doping concen-
trations. The strain is fixed at 0.08% and the n-type back-
ground doping concentration NDn 

is set to 1×1015 cm3. In the  
condition of NDn max=NAp max, the current density curves are 
plotted in Figure 4(a) corresponding to increasing NDn max from  

1×1016 cm3 to 9×1016 cm3, which implies that the threshold 
voltage increases while NDn max decreases. We also investi-
gate the current density at different background doping 
concentrations NDn by setting NDn max=NAp max=1×1017 cm3

 
and increasing NDn from 1×1013 cm3 to 5×1015 cm3, which 
shows little differences as shown in Figure 4(b). The nu-
merical results suggest that the current-voltage characteris-
tics depend on the donor and acceptor doping concentration 
distribution in our model. Figure 5(a) and (b) illustrate the 
distribution of electron and hole concentration at a fixed 
forward bias voltage of 2 V under a tensile strain of 0.08%. 

 
Figure 3  Distribution of electrons (a) and holes (b) at a fixed voltage of 2 V under various strain from 0.08 to 0.08%. 

 
Figure 4  Calculated current densities at various maximum doping concentrations (a) and various n-type background doping concentrations (b). 

 
Figure 5  Distribution of electrons (a) and holes (b) at fixed voltage of 2 V at a fixed strain. 
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5  Conclusion 

In summary, a model for an abrupt anisotype piezoelectric 
heterojunction is proposed to analyze the effect of the pie-
zoelectric charges on the carrier transport behavior. This 
model uses a material configuration of p-n GaN-ZnO, 
which is used extensively in experimental design. The ana-
lytical solutions reveal the theoretical mechanism of piezo-
electric heterojunctions. Numerical simulation is presented 
to depict the carrier transport process providing predictions 
of the piezoelectric heterojunction performance. Therefore, 
the theory presented here can be a guidance for the future 
experimental design of piezoelectric heterojunctions. 

This work was partly supported by the Beijing Institute of Nanoenergy and 
Nanosystems, Chinese Academy of Sciences and the Fundamental Re-
search Funds for the Central Universities (Grant No. Lzujbky-2013-35). 
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